IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v37y2010i2p200-220.html
   My bibliography  Save this article

Parameter Estimation for a Bidimensional Partially Observed Ornstein–Uhlenbeck Process with Biological Application

Author

Listed:
  • BENJAMIN FAVETTO
  • ADELINE SAMSON

Abstract

. We consider a bidimensional Ornstein–Uhlenbeck process to describe the tissue microvascularization in anti‐cancer therapy. Data are discrete, partial and noisy observations of this stochastic differential equation (SDE). Our aim is to estimate the SDE parameters. We use the main advantage of a one‐dimensional observation to obtain an easy way to compute the exact likelihood using the Kalman filter recursion, which allows to implement an easy numerical maximization of the likelihood. Furthermore, we establish the link between the observations and an ARMA process and we deduce the asymptotic properties of the maximum likelihood estimator. We show that this ARMA property can be generalized to a higher dimensional underlying Ornstein–Uhlenbeck diffusion. We compare this estimator with the one obtained by the well‐known expectation maximization algorithm on simulated data. Our estimation methods can be directly applied to other biological contexts such as drug pharmacokinetics or hormone secretions.

Suggested Citation

  • Benjamin Favetto & Adeline Samson, 2010. "Parameter Estimation for a Bidimensional Partially Observed Ornstein–Uhlenbeck Process with Biological Application," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 200-220, June.
  • Handle: RePEc:bla:scjsta:v:37:y:2010:i:2:p:200-220
    DOI: 10.1111/j.1467-9469.2009.00679.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2009.00679.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2009.00679.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Valentine Genon‐Catalot & Thierry Jeantheau & Catherine Laredo, 2003. "Conditional Likelihood Estimators for Hidden Markov Models and Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 297-316, June.
    2. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    3. Genon-Catalot, Valentine & Laredo, Catherine, 2006. "Leroux's method for general hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 222-243, February.
    4. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peilun He & Gareth W. Peters & Nino Kordzakhia & Pavel V. Shevchenko, 2024. "Multi-Factor Function-on-Function Regression of Bond Yields on WTI Commodity Futures Term Structure Dynamics," Papers 2412.05889, arXiv.org.
    2. Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.
    3. Becheri, I.G., 2012. "Limiting experiments for panel-data and jump-diffusion models," Other publications TiSEM 7e53f6cf-fab1-4f86-9e5d-b, Tilburg University, School of Economics and Management.
    4. Picchini, Umberto & Ditlevsen, Susanne, 2011. "Practical estimation of high dimensional stochastic differential mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1426-1444, March.
    5. Narci, Romain & Delattre, Maud & Larédo, Catherine & Vergu, Elisabeta, 2021. "Inference for partially observed epidemic dynamics guided by Kalman filtering techniques," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    6. Oscar García, 2019. "Estimating reducible stochastic differential equations by conversion to a least-squares problem," Computational Statistics, Springer, vol. 34(1), pages 23-46, March.
    7. Peilun He & Nino Kordzakhia & Gareth W. Peters & Pavel V. Shevchenko, 2024. "Multi-Factor Polynomial Diffusion Models and Inter-Temporal Futures Dynamics," Papers 2409.19386, arXiv.org.
    8. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    9. Karol Binkowski & Peilun He & Nino Kordzakhia & Pavel Shevchenko, 2021. "On the Parameter Estimation in the Schwartz-Smiths Two-Factor Model," Papers 2108.01881, arXiv.org.
    10. repec:dau:papers:123456789/11429 is not listed on IDEAS
    11. Peilun He & Nino Kordzakhia & Gareth W. Peters & Pavel V. Shevchenko, 2024. "PDSim: A Shiny App for Polynomial Diffusion Model Simulation and Estimation," Papers 2409.19385, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. López-Pérez & M. Febrero-Bande & W. González-Manteiga, 2025. "Estimation and specification test for diffusion models with stochastic volatility," Statistical Papers, Springer, vol. 66(2), pages 1-36, February.
    2. Paolo Chirico, 2024. "Iterative QML estimation for asymmetric stochastic volatility models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 885-900, July.
    3. Dao, Chi-Mai & Wolters, Jürgen, 2008. "Common stochastic volatility trends in international stock returns," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 431-445, June.
    4. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    5. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    6. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    7. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    8. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    9. Joseph Ndong & Ted Soubdhan, 2022. "Extracting Statistical Properties of Solar and Photovoltaic Power Production for the Scope of Building a Sophisticated Forecasting Framework," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
    10. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    11. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    12. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    13. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    14. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    15. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    16. Preminger, Arie & Storti, Giuseppe, 2014. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," MPRA Paper 59082, University Library of Munich, Germany.
    17. Shaw, Charles, 2018. "Regime-Switching And Levy Jump Dynamics In Option-Adjusted Spreads," MPRA Paper 94154, University Library of Munich, Germany, revised 27 May 2019.
    18. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    19. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    20. Sayat R. Baronyan & İ. İlkay Boduroğlu & Emrah Şener, 2010. "Investigation Of Stochastic Pairs Trading Strategies Under Different Volatility Regimes," Manchester School, University of Manchester, vol. 78(s1), pages 114-134, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:37:y:2010:i:2:p:200-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.