IDEAS home Printed from
   My bibliography  Save this article

Convergence to type I distribution of the extremes of sequences defined by random difference equation


  • Hitczenko, Pawel


We study the extremes of a sequence of random variables (Rn) defined by the recurrence Rn=MnRn-1+q, n>=1, where R0 is arbitrary, (Mn) are iid copies of a non-degenerate random variable M, 0 0 is a constant. We show that under mild and natural conditions on M the suitably normalized extremes of (Rn) converge in distribution to a double-exponential random variable. This partially complements a result of de Haan, Resnick, Rootzén, and de Vries who considered extremes of the sequence (Rn) under the assumption that .

Suggested Citation

  • Hitczenko, Pawel, 2011. "Convergence to type I distribution of the extremes of sequences defined by random difference equation," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2231-2242, October.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:10:p:2231-2242

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Devroye, Luc & Fawzi, Omar, 2010. "Simulating the Dickman distribution," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 242-247, February.
    2. de Haan, Laurens & Resnick, Sidney I. & Rootzén, Holger & de Vries, Casper G., 1989. "Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 213-224, August.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:10:p:2231-2242. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.