IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v86y2023ics0038012122002671.html
   My bibliography  Save this article

Bilevel optimization for the reorganization of inland river ports: A niche perspective

Author

Listed:
  • Jiang, Lijun
  • Wang, Xifu
  • Yang, Kai
  • Gao, Yiwen

Abstract

To address the problems of duplicate construction, disorderly competition, small scale, and weak functionality, we examine the reorganization optimization of an inland river port group to realize its coordinated development. Considering port customers' decision-making behaviors, we propose a bilevel programming model for inland river port group reorganization based on niche theory. More specifically, an upper-level model is used to develop a reorganization plan, including the inland river port spatial layout and expansion extent, to maximize the value contributed by the port group to its region and industry and minimize the competition among the ports from the perspective of port management. More specifically, two upper-level objectives can be creatively measured by niche breadth and niche overlap. A lower-level model oriented to port customers aims to reduce their respective logistics costs by designing a transportation plan and providing feedback to the upper-level model to facilitate adjustments for port group reorganization. Since the dynamic interaction between the upper- and lower-level models significantly increases model complexity, we develop a hybrid heuristic algorithm by incorporating a genetic algorithm and an exact solution method. To verify the applicability of the proposed model and the efficiency of the developed hybrid approach, we conduct a series of numerical experiments on a real-world case study concerning Jining City, Shandong Province, China. Our case study also provides managerial insights into investment scale, land-use intensification, and the balance of planning objectives that may be useful for port managers.

Suggested Citation

  • Jiang, Lijun & Wang, Xifu & Yang, Kai & Gao, Yiwen, 2023. "Bilevel optimization for the reorganization of inland river ports: A niche perspective," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
  • Handle: RePEc:eee:soceps:v:86:y:2023:i:c:s0038012122002671
    DOI: 10.1016/j.seps.2022.101466
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122002671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sakai, Takanori & Kawamura, Kazuya & Hyodo, Tetsuro, 2017. "Spatial reorganization of urban logistics system and its impacts: Case of Tokyo," Journal of Transport Geography, Elsevier, vol. 60(C), pages 110-118.
    2. Lüer-Villagra, Armin & Marianov, Vladimir, 2013. "A competitive hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 231(3), pages 734-744.
    3. Zou, Juan & Yang, Xu & Liu, Zhongbing & Liu, Jiangyang & Zhang, Ling & Zheng, Jinhua, 2021. "Multiobjective bilevel optimization algorithm based on preference selection to solve energy hub system planning problems," Energy, Elsevier, vol. 232(C).
    4. Li, Zhi-Chun & Wang, Mei-Ru & Fu, Xiaowen, 2021. "Strategic planning of inland river ports under different market structures: Coordinated vs. independent operating regime," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    5. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    6. Zare, Marjan & Esmaeili, Maryam & He, Yuanjie, 2019. "Implications of risk-sharing strategies on supply chains with multiple retailers and under random yield," International Journal of Production Economics, Elsevier, vol. 216(C), pages 413-424.
    7. Yingjuan Yang & Yanxia Wu & Haiqing Hu & Ahmed Farouk, 2021. "Modeling and Empirical Analysis of Regional Tourism Competitiveness Based on Niche Theory," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-11, November.
    8. Ye, Jiao & Jiang, Yu & Chen, Jun & Liu, Zhiyuan & Guo, Renzhong, 2021. "Joint optimisation of transfer location and capacity for a capacitated multimodal transport network with elastic demand: a bi-level programming model and paradoxes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    9. Peng Liu & Caiyun Liu & Xiaoling Wei & Giulio E. Cantarella, 2021. "Optimal Allocation of Shared Manufacturing Resources Based on Bilevel Programming," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-15, December.
    10. Hyo-Jeong Byun & Jeong-Joon Kim & Byeong-Cheol Lee, 2020. "Competitiveness Analysis of GDSs in South Korea by Using Niche Theory: Focusing on User Gratification," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    11. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
    12. Massimiliano Caramia & Mattia Dalla Costa, 2020. "An application of bilevel optimisation to the waste collection centres location problem," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 16(1), pages 118-137.
    13. Chenlu Miao & Gang Du & Roger J. Jiao & Tiebin Zhang, 2017. "Coordinated optimisation of platform-driven product line planning by bilevel programming," International Journal of Production Research, Taylor & Francis Journals, vol. 55(13), pages 3808-3831, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
    2. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Yang, Honglin & Zhuo, Wenyan & Shao, Lusheng & Talluri, Srinivas, 2021. "Mean-variance analysis of wholesale price contracts with a capital-constrained retailer: Trade credit financing vs. bank credit financing," European Journal of Operational Research, Elsevier, vol. 294(2), pages 525-542.
    4. Viljoen, Nadia M. & Joubert, Johan W., 2019. "Supply chain micro-communities in urban areas," Journal of Transport Geography, Elsevier, vol. 74(C), pages 211-222.
    5. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Alternate solution approaches for competitive hub location problems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 68-80.
    6. Robichet, Antoine & Nierat, Patrick, 2021. "Consequences of logistics sprawl: Order or chaos? - the case of a parcel service company in Paris metropolitan area," Journal of Transport Geography, Elsevier, vol. 90(C).
    7. Pani, Agnivesh & Mishra, Sabya & Sahu, Prasanta, 2022. "Developing multi-vehicle freight trip generation models quantifying the relationship between logistics outsourcing and insourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    8. Jiang, Xiaodan & Fan, Houming & Luo, Meifeng & Xu, Zhenlin, 2020. "Strategic port competition in multimodal network development considering shippers’ choice," Transport Policy, Elsevier, vol. 90(C), pages 68-89.
    9. Sneha Dhyani Bhatt & Sachin Jayaswal & Ankur Sinha & Navneet Vidyarthi, 2021. "Alternate second order conic program reformulations for hub location under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 304(1), pages 481-527, September.
    10. Jian Zhou & Kexin Xu & Yuxiu Zhao & Haoran Zheng & Zhengnan Dong, 2021. "Hub-and-Spoke Logistics Network Considering Pricing and Co-Opetition," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
    11. Trent, Nadia M. & Joubert, Johan W., 2022. "Logistics sprawl and the change in freight transport activity: A comparison of three measurement methodologies," Journal of Transport Geography, Elsevier, vol. 101(C).
    12. Sakai, Takanori & Kawamura, Kazuya & Hyodo, Tetsuro, 2020. "Logistics facilities for intra and inter-regional shipping: Spatial distributions, location choice factors, and externality," Journal of Transport Geography, Elsevier, vol. 86(C).
    13. Gel, Esma S. & Salman, F. Sibel, 2022. "Dynamic ordering decisions with approximate learning of supply yield uncertainty," International Journal of Production Economics, Elsevier, vol. 243(C).
    14. Lin, Cheng-Chang & Lee, Shwu-Chiou, 2018. "Hub network design problem with profit optimization for time-definite LTL freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 104-120.
    15. Lei, Xinyue & Chen, Junlan & Zhu, Zhenjun & Guo, Xiucheng & Liu, Pei & Jiang, Xiaohong, 2022. "How to locate urban–rural transit hubs from the viewpoint of county integration?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    16. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    17. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2018. "Exact solution of hub network design problems with profits," European Journal of Operational Research, Elsevier, vol. 266(1), pages 57-71.
    18. Vladimir Marianov & H. A. Eiselt, 2016. "On agglomeration in competitive location models," Annals of Operations Research, Springer, vol. 246(1), pages 31-55, November.
    19. Hao, Jun & Li, Jianping & Wu, Dengsheng & Sun, Xiaolei, 2020. "Portfolio optimisation of material purchase considering supply risk – A multi-objective programming model," International Journal of Production Economics, Elsevier, vol. 230(C).
    20. Lu, Cheng & Aritua, Bernard & de Leijer, Harrie & van Liere, Richard & Lee, Paul Tae-Woo, 2023. "Exploring causes of growth in China's inland waterway transport, 1978–2018: Documentary analysis approach," Transport Policy, Elsevier, vol. 136(C), pages 47-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:86:y:2023:i:c:s0038012122002671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.