IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v326y2025i2p255-269.html

Capacitated hub location routing problem with time windows and stochastic demands for the design of intra-city express systems

Author

Listed:
  • Wu, Yuehui
  • Fang, Hui
  • Qureshi, Ali Gul
  • Yamada, Tadashi

Abstract

This work focuses on planning an intra-city express system in a practical environment. Various operation characteristics, such as vehicle capacity, hub capacity, time windows, and stochastic demands, have been considered. Therefore, we introduce a capacitated hub location routing problem with time windows and stochastic demand and formulate it using a multi-stage recourse model. In this model, long-term decisions (hub location and client-to-hub allocation) are made first, and short-term decisions (vehicle routing) are determined after revealing stochastic variables. To solve the problem, we propose a hybrid stochastic variable neighbourhood search (HSVNS) algorithm, which integrates an adaptive large neighbourhood search (ALNS) algorithm within a stochastic variable neighbourhood search (SVNS) framework. Numerical experiments and case studies indicate that the HSVNS algorithm can provide high-quality solutions within a reasonable computation time for instances with up to 70 clients and that considering stochastic factors can efficiently reduce operation costs, especially for instances with tight vehicle capacity and loose time windows.

Suggested Citation

  • Wu, Yuehui & Fang, Hui & Qureshi, Ali Gul & Yamada, Tadashi, 2025. "Capacitated hub location routing problem with time windows and stochastic demands for the design of intra-city express systems," European Journal of Operational Research, Elsevier, vol. 326(2), pages 255-269.
  • Handle: RePEc:eee:ejores:v:326:y:2025:i:2:p:255-269
    DOI: 10.1016/j.ejor.2025.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725003625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Yuehui & Qureshi, Ali Gul & Yamada, Tadashi, 2022. "Adaptive large neighborhood decomposition search algorithm for multi-allocation hub location routing problem," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1113-1127.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    4. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    5. Hu, Qing-Mi & Hu, Shaolong & Wang, Jian & Li, Xiaoping, 2021. "Stochastic single allocation hub location problems with balanced utilization of hub capacities," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 204-227.
    6. Ebery, Jamie & Krishnamoorthy, Mohan & Ernst, Andreas & Boland, Natashia, 2000. "The capacitated multiple allocation hub location problem: Formulations and algorithms," European Journal of Operational Research, Elsevier, vol. 120(3), pages 614-631, February.
    7. Briseida Sarasola & Karl F. Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    8. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    9. Fábio Francisco da Costa Fontes & Gilles Goncalves, 2021. "A variable neighbourhood decomposition search approach applied to a global liner shipping network using a hub-and-spoke with sub-hub structure," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 30-46, January.
    10. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    11. Ji Ung Sun, 2015. "An Endosymbiotic Evolutionary Algorithm for the Hub Location-Routing Problem," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, July.
    12. Saint-Guillain, Michael & Paquay, Célia & Limbourg, Sabine, 2021. "Time-dependent stochastic vehicle routing problem with random requests: Application to online police patrol management in Brussels," European Journal of Operational Research, Elsevier, vol. 292(3), pages 869-885.
    13. Yuehui Wu & Ali Gul Qureshi & Tadashi Yamada & Shanchuan Yu, 2024. "Branch-and-price-and-cut algorithm for the capacitated single allocation hub location routeing problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 75(2), pages 410-422, February.
    14. Ilic, Aleksandar & Urosevic, Dragan & Brimberg, Jack & Mladenovic, Nenad, 2010. "A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 206(2), pages 289-300, October.
    15. A.T. Ernst & M. Krishnamoorthy, 1999. "Solution algorithms for the capacitated single allocation hub location problem," Annals of Operations Research, Springer, vol. 86(0), pages 141-159, January.
    16. Yıldız, Barış & Savelsbergh, Martin, 2022. "Optimizing package express operations in China," European Journal of Operational Research, Elsevier, vol. 300(1), pages 320-335.
    17. Wang, Congke & Liu, Yankui & Yang, Guoqing, 2023. "Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    18. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    19. Laijun Zhao & Xiaoli Wang & Johan Stoeter & Yan Sun & Huiyong Li & Qingmi Hu & Meichen Li, 2019. "Path Optimization Model for Intra-City Express Delivery in Combination with Subway System and Ground Transportation," Sustainability, MDPI, vol. 11(3), pages 1-25, February.
    20. Venkatesh Pandiri & Alok Singh, 2021. "A simple hyper-heuristic approach for a variant of many-to-many hub location-routing problem," Journal of Heuristics, Springer, vol. 27(5), pages 791-868, October.
    21. G. Nagy & S. Salhi, 1998. "The many-to-many location-routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(2), pages 261-275, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yuehui & Qureshi, Ali Gul & Yamada, Tadashi, 2022. "Adaptive large neighborhood decomposition search algorithm for multi-allocation hub location routing problem," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1113-1127.
    2. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    3. Shi, Yong & Boudouh, Toufik & Grunder, Olivier, 2019. "A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 52-95.
    4. Kassem Danach & Shahin Gelareh & Rahimeh Neamatian Monemi, 2019. "The capacitated single-allocation p-hub location routing problem: a Lagrangian relaxation and a hyper-heuristic approach," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 597-631, December.
    5. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    6. Liu, Xiaoyue & Li, Jingze & Dahan, Mathieu & Montreuil, Benoit, 2025. "Dynamic hub capacity planning in hyperconnected relay transportation networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    7. Olivera Janković & Stefan Mišković & Zorica Stanimirović & Raca Todosijević, 2017. "Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems," Annals of Operations Research, Springer, vol. 259(1), pages 191-216, December.
    8. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    9. Vishal Bansal & Sachin Jayaswal & Ankur Sinha, 2024. "Capacitated multiple allocation hub location problems under the risk of interdiction: model formulations and solution approaches," Annals of Operations Research, Springer, vol. 332(1), pages 213-251, January.
    10. Wandelt, Sebastian & Signori, Andrea & Chang, Shuming & Wang, Shuang & Du, Zhuoming & Sun, Xiaoqian, 2025. "Unleashing the potential of operations research in air transport: A review of applications, methods, and challenges," Journal of Air Transport Management, Elsevier, vol. 124(C).
    11. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    12. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    13. Reusken, Meike & Laporte, Gilbert & Rohmer, Sonja U.K. & Cruijssen, Frans, 2024. "Vehicle routing with stochastic demand, service and waiting times — The case of food bank collection problems," European Journal of Operational Research, Elsevier, vol. 317(1), pages 111-127.
    14. Raca Todosijević & Olivera Stančić & Zorica Stanimirović & Stefan Mišković, 2025. "General variable neighborhood search for the capacitated single allocation hub maximal covering problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(2), pages 262-303, July.
    15. Junlong Zhang & William Lam & Bi Chen, 2013. "A Stochastic Vehicle Routing Problem with Travel Time Uncertainty: Trade-Off Between Cost and Customer Service," Networks and Spatial Economics, Springer, vol. 13(4), pages 471-496, December.
    16. Zhang, Yimeng & Tan, Xiangrong & Gan, Mi & Liu, Xiaobo & Atasoy, Bilge, 2025. "Operational synchromodal transport planning methodologies: Review and roadmap," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    17. Mohammed Bazirha & Abdeslam Kadrani & Rachid Benmansour, 2023. "Stochastic home health care routing and scheduling problem with multiple synchronized services," Annals of Operations Research, Springer, vol. 320(2), pages 573-601, January.
    18. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
    19. Johnsen, Lennart C. & Meisel, Frank & Ehmke, Jan F., 2025. "Stochastic stay times for interrelated trips in the rural dial-a-ride problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
    20. Jayaswal, Sachin & Vidyarthi, Navneet, 2023. "Multiple allocation hub location with service level constraints for two shipment classes," European Journal of Operational Research, Elsevier, vol. 309(2), pages 634-655.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:326:y:2025:i:2:p:255-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.