IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v43y2009i2p121-130.html
   My bibliography  Save this article

Gradual location set covering with service quality

Author

Listed:
  • Eiselt, H.A.
  • Marianov, Vladimir

Abstract

Location set covering models were first described in the early 1970s. In their simplest form, they minimize the number of facilities necessary to completely cover a set of customers in some given space, where covering means providing service within a predetermined distance. This paper considers extensions of the basic model that soften the covered/not covered dichotomy and replace it with gradual covering. The models discussed in this work include the quality of service as a criterion. The models are formulated and compared with each other with respect to their size and features. A small series of computational tests concludes the paper.

Suggested Citation

  • Eiselt, H.A. & Marianov, Vladimir, 2009. "Gradual location set covering with service quality," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 121-130, June.
  • Handle: RePEc:eee:soceps:v:43:y:2009:i:2:p:121-130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038-0121(08)00022-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    2. Hasan Pirkul & David A. Schilling, 1991. "The Maximal Covering Location Problem with Capacities on Total Workload," Management Science, INFORMS, vol. 37(2), pages 233-248, February.
    3. Berman, Oded & Krass, Dmitry & Drezner, Zvi, 2003. "The gradual covering decay location problem on a network," European Journal of Operational Research, Elsevier, vol. 151(3), pages 474-480, December.
    4. Chang, Ching-Ter, 2001. "On the polynomial mixed 0-1 fractional programming problems," European Journal of Operational Research, Elsevier, vol. 131(1), pages 224-227, May.
    5. Berlin, Geoffrey N. & Liebman, Jon C., 1974. "Mathematical analysis of emergency ambulance location," Socio-Economic Planning Sciences, Elsevier, vol. 8(6), pages 323-328, December.
    6. Richard L. Church & Kenneth L. Roberts, 1983. "Generalized Coverage Models And Public Facility Location," Papers in Regional Science, Wiley Blackwell, vol. 53(1), pages 117-135, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    2. Chevalier, Philippe & Thomas, Isabelle & Geraets, David & Goetghebeur, Els & Janssens, Olivier & Peeters, Dominique & Plastria, Frank, 2012. "Locating fire stations: An integrated approach for Belgium," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 173-182.
    3. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    4. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2021. "Directional approach to gradual cover: the continuous case," Computational Management Science, Springer, vol. 18(1), pages 25-47, January.
    5. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    6. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Gradual cover competitive facility location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 333-354, June.
    7. Hamaide, Bertrand & Albers, Heidi J. & Busby, Gwenlyn, 2014. "Backup coverage models in nature reserve site selection with spatial spread risk heterogeneity," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 158-167.
    8. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    9. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    10. Bertsimas, Dimitris & Ng, Yeesian, 2019. "Robust and stochastic formulations for ambulance deployment and dispatch," European Journal of Operational Research, Elsevier, vol. 279(2), pages 557-571.
    11. Ibarra-Rojas, O.J. & Ozuna, L. & López-Piñón, D., 2020. "The maximal covering location problem with accessibility indicators," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    12. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray, 2011. "Market Coverage and Service Quality in Digital Subscriber Lines Infrastructure Planning," International Regional Science Review, , vol. 34(3), pages 368-390, July.
    13. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    14. Xiang Zhao & Xiaoya Ma & Kun Wang & Yuqing Long & Dongjie Zhang & Zhanchun Xiao, 2017. "A Spatially Explicit Optimization Model for Agricultural Straw-Based Power Plant Site Selection: A Case Study in Hubei Province, China," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    15. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
    16. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Directional approach to gradual cover: a maximin objective," Computational Management Science, Springer, vol. 17(1), pages 121-139, January.
    17. Burkey, M.L. & Bhadury, J. & Eiselt, H.A., 2012. "A location-based comparison of health care services in four U.S. states with efficiency and equity," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 157-163.
    18. Bashiri, Mahdi & Chehrepak, Elaheh & Gomari, Saeed, 2014. "Gradual Covering Location Problem with Stochastic Radius," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Innovative Methods in Logistics and Supply Chain Management: Current Issues and Emerging Practices. Proceedings of the Hamburg International Conferenc, volume 19, pages 165-186, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    3. Sardar Ansari & Laura Albert McLay & Maria E. Mayorga, 2017. "A Maximum Expected Covering Problem for District Design," Transportation Science, INFORMS, vol. 51(1), pages 376-390, February.
    4. Bashiri, Mahdi & Chehrepak, Elaheh & Gomari, Saeed, 2014. "Gradual Covering Location Problem with Stochastic Radius," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Innovative Methods in Logistics and Supply Chain Management: Current Issues and Emerging Practices. Proceedings of the Hamburg International Conferenc, volume 19, pages 165-186, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    5. Timothy C. Y. Chan & Derya Demirtas & Roy H. Kwon, 2016. "Optimizing the Deployment of Public Access Defibrillators," Management Science, INFORMS, vol. 62(12), pages 3617-3635, December.
    6. Xu, Jing & Murray, Alan T. & Church, Richard L. & Wei, Ran, 2023. "Service allocation equity in location coverage analytics," European Journal of Operational Research, Elsevier, vol. 305(1), pages 21-37.
    7. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray, 2011. "Market Coverage and Service Quality in Digital Subscriber Lines Infrastructure Planning," International Regional Science Review, , vol. 34(3), pages 368-390, July.
    8. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    9. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    10. Sadeghi, Mohammad & Yaghoubi, Saeed, 2024. "Optimization models for cloud seeding network design and operations," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1146-1167.
    11. Peker, Meltem & Kara, Bahar Y., 2015. "The P-Hub maximal covering problem and extensions for gradual decay functions," Omega, Elsevier, vol. 54(C), pages 158-172.
    12. Knight, V.A. & Harper, P.R. & Smith, L., 2012. "Ambulance allocation for maximal survival with heterogeneous outcome measures," Omega, Elsevier, vol. 40(6), pages 918-926.
    13. Vatsa, Amit Kumar & Jayaswal, Sachin, 2015. "A New Formulation and Benders' Decomposition for Multi-period facility Location Problem with Server Uncertainty," IIMA Working Papers WP2015-02-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    15. Blanquero, Rafael & Carrizosa, Emilio & G.-Tóth, Boglárka, 2016. "Maximal Covering Location Problems on networks with regional demand," Omega, Elsevier, vol. 64(C), pages 77-85.
    16. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    17. Boffey, Brian & Galvao, Roberto & Espejo, Luis, 2007. "A review of congestion models in the location of facilities with immobile servers," European Journal of Operational Research, Elsevier, vol. 178(3), pages 643-662, May.
    18. Olivera Janković & Stefan Mišković & Zorica Stanimirović & Raca Todosijević, 2017. "Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems," Annals of Operations Research, Springer, vol. 259(1), pages 191-216, December.
    19. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    20. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:43:y:2009:i:2:p:121-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.