IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v17y2020i1d10.1007_s10287-019-00353-5.html
   My bibliography  Save this article

Directional approach to gradual cover: a maximin objective

Author

Listed:
  • Tammy Drezner

    (California State University-Fullerton)

  • Zvi Drezner

    (California State University-Fullerton)

  • Pawel Kalczynski

    (California State University-Fullerton)

Abstract

The objective of original cover location models is to cover demand within a given distance by facilities. Locating a given number of facilities to cover as much demand as possible is referred to as max-cover, and finding the minimum number of facilities required to cover all the demand is referred to as set covering. When the objective is to maximize the minimum cover of demand points, the maximin objective is equivalent to set covering because each demand point is either covered or not. The gradual (or partial) cover replaces abrupt drop from full cover to no cover by defining gradual decline in cover. Both maximizing total cover and maximizing the minimum cover are useful objectives using the gradual cover measure. In this paper we use a recently proposed rule for calculating the joint cover of a demand point by several facilities termed “directional gradual cover”. The objective is to maximize the minimum cover of demand points. The solution approaches were extensively tested on a case study of covering Orange County, California.

Suggested Citation

  • Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Directional approach to gradual cover: a maximin objective," Computational Management Science, Springer, vol. 17(1), pages 121-139, January.
  • Handle: RePEc:spr:comgts:v:17:y:2020:i:1:d:10.1007_s10287-019-00353-5
    DOI: 10.1007/s10287-019-00353-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-019-00353-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-019-00353-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berman, Oded & Krass, Dmitry & Drezner, Zvi, 2003. "The gradual covering decay location problem on a network," European Journal of Operational Research, Elsevier, vol. 151(3), pages 474-480, December.
    2. Oded Berman & Zvi Drezner & Dmitry Krass, 2019. "The multiple gradual cover location problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(6), pages 931-940, June.
    3. T Drezner & Z Drezner & S Salhi, 2006. "A multi-objective heuristic approach for the casualty collection points location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 727-734, June.
    4. Tammy Drezner & Zvi Drezner, 2007. "Equity Models in Planar Location," Computational Management Science, Springer, vol. 4(1), pages 1-16, January.
    5. Eiselt, H.A. & Marianov, Vladimir, 2009. "Gradual location set covering with service quality," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 121-130, June.
    6. Tammy Drezner & Zvi Drezner & Zvi Goldstein, 2010. "A stochastic gradual cover location problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(4), pages 367-372, June.
    7. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
    8. Zvi Drezner & George O. Wesolowsky & Tammy Drezner, 2004. "The gradual covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 841-855, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2021. "Directional approach to gradual cover: the continuous case," Computational Management Science, Springer, vol. 18(1), pages 25-47, January.
    2. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
    3. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    4. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Gradual cover competitive facility location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 333-354, June.
    5. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    6. Bashiri, Mahdi & Chehrepak, Elaheh & Gomari, Saeed, 2014. "Gradual Covering Location Problem with Stochastic Radius," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Innovative Methods in Logistics and Supply Chain Management: Current Issues and Emerging Practices. Proceedings of the Hamburg International Conferenc, volume 19, pages 165-186, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    7. Karatas, Mumtaz & Eriskin, Levent, 2021. "The minimal covering location and sizing problem in the presence of gradual cooperative coverage," European Journal of Operational Research, Elsevier, vol. 295(3), pages 838-856.
    8. Shahzad Bhatti & Michael Lim & Ho-Yin Mak, 2015. "Alternative fuel station location model with demand learning," Annals of Operations Research, Springer, vol. 230(1), pages 105-127, July.
    9. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray, 2011. "Market Coverage and Service Quality in Digital Subscriber Lines Infrastructure Planning," International Regional Science Review, , vol. 34(3), pages 368-390, July.
    10. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    11. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    12. Narjes Sabeghi & Hamed Reza Tareghian, 2020. "Using the generalized maximum covering location model to control a project’s progress," Computational Management Science, Springer, vol. 17(1), pages 1-21, January.
    13. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    14. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    15. Taymaz, S. & Iyigun, C. & Bayindir, Z.P. & Dellaert, N.P., 2020. "A healthcare facility location problem for a multi-disease, multi-service environment under risk aversion," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    16. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    17. Ibarra-Rojas, O.J. & Ozuna, L. & López-Piñón, D., 2020. "The maximal covering location problem with accessibility indicators," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    18. Bertsimas, Dimitris & Ng, Yeesian, 2019. "Robust and stochastic formulations for ambulance deployment and dispatch," European Journal of Operational Research, Elsevier, vol. 279(2), pages 557-571.
    19. Eda Yücel & F. Sibel Salman & Burçin Bozkaya & Cemre Gökalp, 2020. "A data-driven optimization framework for routing mobile medical facilities," Annals of Operations Research, Springer, vol. 291(1), pages 1077-1102, August.
    20. Arana-Jiménez, Manuel & Blanco, Víctor & Fernández, Elena, 2020. "On the fuzzy maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 283(2), pages 692-705.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:17:y:2020:i:1:d:10.1007_s10287-019-00353-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.