IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p2332-2345.html
   My bibliography  Save this article

Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments

Author

Listed:
  • Willsteed, Edward A.
  • Jude, Simon
  • Gill, Andrew B.
  • Birchenough, Silvana N.R.

Abstract

Proponents of marine renewable energy worldwide highlight that regulatory and consenting procedures are a significant barrier to the upscaling of infrastructure required to transform the energy generation sector. Uncertainties about the cumulative effects of marine renewable energy developments cause substantial delays during the consenting process, which are exacerbated by the lack of clarity about how to assess cumulative effects. These obstacles have contributed to perceptions that this essential emerging industry receives disproportionate scrutiny relative to established maritime activities. However, alongside legislated targets to reduce carbon emissions, there are legal obligations to protect, maintain and improve the condition of the marine environment. As the imperative to halt the decline in the condition of the environment increases, so expectations of cumulative impact assessments grow and the risk of consenting delays persists. To investigate how robust current cumulative impact assessment practise is, a novel evaluation framework was developed and applied to Environmental Statements of the world's largest offshore wind farms, currently in United Kingdom waters. The framework was designed to evaluate cumulative impact assessments relative to the information needs of decision-makers tasked with managing cumulative effects. We found that current practise does not meet those needs, that there is dissonance between science and practise, and problematic variability between assessments was observed. Straightforward recommendations for improved practise are provided, which if implemented may ease the perceived regulatory burden by clarifying practise. We also highlight additional steps that could enable project-led cumulative impact assessments to better support regional marine management. The results and recommendations will be of interest to countries worldwide where marine renewable energy is emerging alongside ecosystem-approach and marine spatial planning aspirations.

Suggested Citation

  • Willsteed, Edward A. & Jude, Simon & Gill, Andrew B. & Birchenough, Silvana N.R., 2018. "Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2332-2345.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2332-2345
    DOI: 10.1016/j.rser.2017.08.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211731225X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.08.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    2. Tran, Liem T. & O’neill, Robert V. & Smith, Elizabeth R., 2009. "Determine the most influencing stressors and the most susceptible resources for environmental integrated assessment," Ecological Modelling, Elsevier, vol. 220(18), pages 2335-2340.
    3. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    4. Curtin, Richard & Prellezo, Raúl, 2010. "Understanding marine ecosystem based management: A literature review," Marine Policy, Elsevier, vol. 34(5), pages 821-830, September.
    5. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    6. Wright, Glen, 2015. "Marine governance in an industrialised ocean: A case study of the emerging marine renewable energy industry," Marine Policy, Elsevier, vol. 52(C), pages 77-84.
    7. Masden, Elizabeth A. & McCluskie, Aly & Owen, Ellie & Langston, Rowena H.W., 2015. "Renewable energy developments in an uncertain world: The case of offshore wind and birds in the UK," Marine Policy, Elsevier, vol. 51(C), pages 169-172.
    8. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    9. Dai, Kaoshan & Bergot, Anthony & Liang, Chao & Xiang, Wei-Ning & Huang, Zhenhua, 2015. "Environmental issues associated with wind energy – A review," Renewable Energy, Elsevier, vol. 75(C), pages 911-921.
    10. Crowder, Larry & Norse, Elliott, 2008. "Essential ecological insights for marine ecosystem-based management and marine spatial planning," Marine Policy, Elsevier, vol. 32(5), pages 772-778, September.
    11. Sithole, H. & Cockerill, T.T. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Porter, R.T.J. & Pourkashanian, M., 2016. "Developing an optimal electricity generation mix for the UK 2050 future," Energy, Elsevier, vol. 100(C), pages 363-373.
    12. Long, Rachel D. & Charles, Anthony & Stephenson, Robert L., 2015. "Key principles of marine ecosystem-based management," Marine Policy, Elsevier, vol. 57(C), pages 53-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baulaz, Yoann & Mouchet, Maud & Niquil, Nathalie & Ben Rais Lasram, Frida, 2023. "An integrated conceptual model to characterize the effects of offshore wind farms on ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    2. Putuhena, Hugo & White, David & Gourvenec, Susan & Sturt, Fraser, 2023. "Finding space for offshore wind to support net zero: A methodology to assess spatial constraints and future scenarios, illustrated by a UK case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. J Charles Rajesh Kumar & D Vinod Kumar & D Baskar & B Mary Arunsi & R Jenova & MA Majid, 2021. "Offshore wind energy status, challenges, opportunities, environmental impacts, occupational health, and safety management in India," Energy & Environment, , vol. 32(4), pages 565-603, June.
    5. Aristi Karagkouni & Dimitrios Dimitriou, 2022. "Sustainability Performance Appraisal for Airports Serving Tourist Islands," Sustainability, MDPI, vol. 14(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merrie, Andrew & Olsson, Per, 2014. "An innovation and agency perspective on the emergence and spread of Marine Spatial Planning," Marine Policy, Elsevier, vol. 44(C), pages 366-374.
    2. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    3. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    4. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    5. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    6. Moravec, David & Barták, Vojtěch & Puš, Vladimír & Wild, Jan, 2018. "Wind turbine impact on near-ground air temperature," Renewable Energy, Elsevier, vol. 123(C), pages 627-633.
    7. Fox, Clive J. & Benjamins, Steven & Masden, Elizabeth A. & Miller, Raeanne, 2018. "Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1926-1938.
    8. Eduardo Martínez-Mendoza & Luis Arturo Rivas-Tovar & Luis Enrique García-Santamaría, 2021. "Wind energy in the Isthmus of Tehuantepec: conflicts and social implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11706-11731, August.
    9. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    10. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik R., 2020. "Towards a solar-hydro based generation: The case of Switzerland," Energy Policy, Elsevier, vol. 138(C).
    11. Matthew Osborne & Emma Sundström & Örjan Bodin, 2019. "Ecological interdependencies and resource competition: The role of information and communication in promoting effective collaboration in complex management situations," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-22, December.
    12. Alphan, H., 2021. "Modelling potential visibility of wind turbines: A geospatial approach for planning and impact mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Yar, Adem & Kınas, Zeynep & Karabiber, Abdulkerim & Ozen, Abdurrahman & Okbaz, Abdulkerim & Ozel, Faruk, 2021. "Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting," Renewable Energy, Elsevier, vol. 179(C), pages 1781-1792.
    14. Brennan, Jonathon & Fitzsimmons, Clare & Gray, Tim & Raggatt, Laura, 2014. "EU marine strategy framework directive (MSFD) and marine spatial planning (MSP): Which is the more dominant and practicable contributor to maritime policy in the UK?," Marine Policy, Elsevier, vol. 43(C), pages 359-366.
    15. Santiago Salvador & Marta Chantal Ribeiro, 2023. "Socio‐economic, legal, and political context of offshore renewable energies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    16. Huesca-Pérez, María Elena & Sheinbaum-Pardo, Claudia & Köppel, Johann, 2016. "Social implications of siting wind energy in a disadvantaged region – The case of the Isthmus of Tehuantepec, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 952-965.
    17. Claire Burch & Rebecca Loraamm & Travis Gliedt, 2020. "The “Green on Green” Conflict in Wind Energy Development: A Case Study of Environmentally Conscious Individuals in Oklahoma, USA," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    18. Anshelm, Jonas & Simon, Haikola, 2016. "Power production and environmental opinions – Environmentally motivated resistance to wind power in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1545-1555.
    19. Skenteris, Konstantinos & Mirasgedis, Sevastianos & Tourkolias, Christos, 2019. "Implementing hedonic pricing models for valuing the visual impact of wind farms in Greece," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 248-258.
    20. Kendra Ryan & Andy Danylchuk & Adrian Jordaan, 2018. "Is Marine Spatial Planning Enough to Overcome Biological Data Deficiencies?," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2332-2345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.