IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v200y2025ics030142152500062x.html
   My bibliography  Save this article

Spatial conflict in offshore wind farms: Challenges and solutions for the commercial fishing industry

Author

Listed:
  • Szostek, C.L.
  • Watson, S.C.L.
  • Trifonova, N.
  • Beaumont, N.J.
  • Scott, B.E.

Abstract

The offshore wind (OW) energy industry is growing exponentially. Coastal seas provide a wealth of ecosystem services and national regulators face the challenge of managing co-location and spatial conflict between multiple marine industries. Due to its prominent position in the global OW energy market, we use the UK as a case study through which to investigate interactions between the commercial fishing industry and OWFs. This study presents views from the fishing industry gathered through a structured survey and one-on-one interviews, and reveals the major issues and concerns facing fishermen in respect of current, and future developments. The majority of fishermen surveyed feel their fishing grounds and livelihoods are threatened by OWFs, with social, wellbeing and economic impacts felt across vessel sizes (5–50m in length) and fleet sectors (represented by 11 types of fishing gear). A small minority identified potential benefits, and most suggested potential solutions and opportunities for mitigation of impacts. We summarise the findings, outline conflicts and opportunities, and converge these into policy recommendations with the aim of supporting increased collaboration and equity between commercial fishermen and energy companies in future offshore leasing rounds, and provide insight and best practice to other global nations developing offshore wind energy.

Suggested Citation

  • Szostek, C.L. & Watson, S.C.L. & Trifonova, N. & Beaumont, N.J. & Scott, B.E., 2025. "Spatial conflict in offshore wind farms: Challenges and solutions for the commercial fishing industry," Energy Policy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:enepol:v:200:y:2025:i:c:s030142152500062x
    DOI: 10.1016/j.enpol.2025.114555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152500062X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2025.114555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernando S. Paolo & David Kroodsma & Jennifer Raynor & Tim Hochberg & Pete Davis & Jesse Cleary & Luca Marsaglia & Sara Orofino & Christian Thomas & Patrick Halpin, 2024. "Satellite mapping reveals extensive industrial activity at sea," Nature, Nature, vol. 625(7993), pages 85-91, January.
    2. Fernando S. Paolo & David Kroodsma & Jennifer Raynor & Tim Hochberg & Pete Davis & Jesse Cleary & Luca Marsaglia & Sara Orofino & Christian Thomas & Patrick Halpin, 2024. "Author Correction: Satellite mapping reveals extensive industrial activity at sea," Nature, Nature, vol. 626(8000), pages 15-15, February.
    3. Hall, Damon M. & Lazarus, Eli D., 2015. "Deep waters: Lessons from community meetings about offshore wind resource development in the U.S," Marine Policy, Elsevier, vol. 57(C), pages 9-17.
    4. Berkenhagen, Jörg & Döring, Ralf & Fock, Heino O. & Kloppmann, Matthias H.F. & Pedersen, Søren A. & Schulze, Torsten, 2010. "Decision bias in marine spatial planning of offshore wind farms: Problems of singular versus cumulative assessments of economic impacts on fisheries," Marine Policy, Elsevier, vol. 34(3), pages 733-736, May.
    5. Ashley, M.C. & Mangi, S.C. & Rodwell, L.D., 2014. "The potential of offshore windfarms to act as marine protected areas – A systematic review of current evidence," Marine Policy, Elsevier, vol. 45(C), pages 301-309.
    6. Alexander, Karen A. & Wilding, Thomas A. & Jacomina Heymans, Johanna, 2013. "Attitudes of Scottish fishers towards marine renewable energy," Marine Policy, Elsevier, vol. 37(C), pages 239-244.
    7. Reilly, Kieran & O’Hagan, Anne Marie & Dalton, Gordon, 2015. "Attitudes and perceptions of fishermen on the island of Ireland towards the development of marine renewable energy projects," Marine Policy, Elsevier, vol. 58(C), pages 88-97.
    8. Anaëlle J. Lemasson & Paul J. Somerfield & Michaela Schratzberger & Murray S. A. Thompson & Louise B. Firth & Elena Couce & C. Louise McNeill & Joana Nunes & Christine Pascoe & Stephen C. L. Watson & , 2024. "A global meta-analysis of ecological effects from offshore marine artificial structures," Nature Sustainability, Nature, vol. 7(4), pages 485-495, April.
    9. Hooper, Tara & Austen, Melanie, 2014. "The co-location of offshore windfarms and decapod fisheries in the UK: Constraints and opportunities," Marine Policy, Elsevier, vol. 43(C), pages 295-300.
    10. deCastro, M. & Salvador, S. & Gómez-Gesteira, M. & Costoya, X. & Carvalho, D. & Sanz-Larruga, F.J. & Gimeno, L., 2019. "Europe, China and the United States: Three different approaches to the development of offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 55-70.
    11. Hooper, Tara & Ashley, Matthew & Austen, Melanie, 2015. "Perceptions of fishers and developers on the co-location of offshore wind farms and decapod fisheries in the UK," Marine Policy, Elsevier, vol. 61(C), pages 16-22.
    12. Willsteed, Edward A. & Jude, Simon & Gill, Andrew B. & Birchenough, Silvana N.R., 2018. "Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2332-2345.
    13. Putuhena, Hugo & White, David & Gourvenec, Susan & Sturt, Fraser, 2023. "Finding space for offshore wind to support net zero: A methodology to assess spatial constraints and future scenarios, illustrated by a UK case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Yang & Swales, J. Kim & Hooper, Tara & Austen, Melanie C. & Wang, Xinhao & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Economic trade-offs in marine resource use between offshore wind farms and fisheries in Scottish waters," Energy Economics, Elsevier, vol. 125(C).
    2. Danovaro, Roberto & Bianchelli, Silvia & Brambilla, Paola & Brussa, Gaia & Corinaldesi, Cinzia & Del Borghi, Adriana & Dell’Anno, Antonio & Fraschetti, Simonetta & Greco, Silvestro & Grosso, Mario & N, 2024. "Making eco-sustainable floating offshore wind farms: Siting, mitigations, and compensations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    4. Qu, Yang & Hooper, Tara & Austen, Melanie C. & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland," Applied Energy, Elsevier, vol. 332(C).
    5. Qu, Yang & Hooper, Tara & Swales, J. Kim & Papathanasopoulou, Eleni & Austen, Melanie C. & Yan, Xiaoyu, 2021. "Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland," Energy Policy, Elsevier, vol. 149(C).
    6. Hideki Shimada & Kenji Asano & Yu Nagai & Akito Ozawa, 2022. "Assessing the Impact of Offshore Wind Power Deployment on Fishery: A Synthetic Control Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 791-829, November.
    7. Hooper, Tara & Ashley, Matthew & Austen, Melanie, 2015. "Perceptions of fishers and developers on the co-location of offshore wind farms and decapod fisheries in the UK," Marine Policy, Elsevier, vol. 61(C), pages 16-22.
    8. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    9. Reilly, Kieran & O’Hagan, Anne Marie & Dalton, Gordon, 2016. "Developing benefit schemes and financial compensation measures for fishermen impacted by marine renewable energy projects," Energy Policy, Elsevier, vol. 97(C), pages 161-170.
    10. A.H.T. Shyam Kularathna & Sayaka Suda & Ken Takagi & Shigeru Tabeta, 2019. "Evaluation of Co-Existence Options of Marine Renewable Energy Projects in Japan," Sustainability, MDPI, vol. 11(10), pages 1-26, May.
    11. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Caballero, Mariah D. & Gunda, Thushara & McDonald, Yolanda J., 2023. "Energy justice & coastal communities: The case for Meaningful Marine Renewable Energy Development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Wright, Glen & O’Hagan, Anne Marie & de Groot, Jiska & Leroy, Yannick & Soininen, Niko & Salcido, Rachael & Castelos, Montserrat Abad & Jude, Simon & Rochette, Julien & Kerr, Sandy, 2016. "Establishing a legal research agenda for ocean energy," Marine Policy, Elsevier, vol. 63(C), pages 126-134.
    16. Fahmida Wazed Tina & Nasrin Afsarimanesh & Anindya Nag & Md Eshrat E. Alahi, 2025. "Integrating AIoT Technologies in Aquaculture: A Systematic Review," Future Internet, MDPI, vol. 17(5), pages 1-35, April.
    17. Marian Stuiver & Katrine Soma & Phoebe Koundouri & Sander Van den Burg & Alwin Gerritsen & Thorbjørn Harkamp & Niels Dalsgaard & Fabio Zagonari & Raul Guanche & Jan-Joost Schouten & Saskia Hommes & Am, 2016. "The Governance of Multi-Use Platforms at Sea for Energy Production and Aquaculture: Challenges for Policy Makers in European Seas," Sustainability, MDPI, vol. 8(4), pages 1-19, April.
    18. Yildiz, S.S., 2024. "Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Holland, Robert A. & Scott, Kate & Hinton, Emma D. & Austen, Melanie C. & Barrett, John & Beaumont, Nicola & Blaber-Wegg, Tina & Brown, Gareth & Carter-Silk, Eleanor & Cazenave, Pierre & Eigenbrod, Fe, 2016. "Bridging the gap between energy and the environment," Energy Policy, Elsevier, vol. 92(C), pages 181-189.
    20. Bicknell, Anthony W.J. & Gierhart, Samuel & Newton, Matthew & Main, Robert & Thompson, Paul & Witt, Matthew J., 2025. "The role of acoustic telemetry to assess the effects of offshore wind infrastructure on fish behaviour, populations and predation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:200:y:2025:i:c:s030142152500062x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.