IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v71y2017icp720-731.html
   My bibliography  Save this article

Pumped storage power stations in China: The past, the present, and the future

Author

Listed:
  • Kong, Yigang
  • Kong, Zhigang
  • Liu, Zhiqi
  • Wei, Congmei
  • Zhang, Jingfang
  • An, Gaocheng

Abstract

The pumped storage power station (PSPS) is a special power source that has flexible operation modes and multiple functions. With the rapid economic development in China, the energy demand and the peak-valley load difference of the power grid are continuing to increase. Moreover, wind power, nuclear power, and other new energy sources also develop very fast. Developing the PSPS is of great importance to the power source structure adjustment, and the secure and stable operation of the power grids in China in the 21st century. This paper provides a survey of the PSPS development in China. Over the last two decades, China's PSPS has developed quickly. The PSPS installed capacity had reached 21.83 gigawatts (GW) by the end of 2014, ranking among the top in the world. 27 PSPSs have been completed and put into production, and many with the installed capacity of more than 1200megawatts (MW) are still under construction, including Fengning PSPS. In addition, a lot of sites suitable for the PSPS construction have been planned. With regard to the challenges existing in the exploitation course, some suggestions are proposed. There is a bright future for the PSPS development in China.

Suggested Citation

  • Kong, Yigang & Kong, Zhigang & Liu, Zhiqi & Wei, Congmei & Zhang, Jingfang & An, Gaocheng, 2017. "Pumped storage power stations in China: The past, the present, and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 720-731.
  • Handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:720-731
    DOI: 10.1016/j.rser.2016.12.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116311509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.12.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Zervos, Arthouros & Papantonis, Dimitris & Voutsinas, Spiros, 2008. "Pumped storage systems introduction in isolated power production systems," Renewable Energy, Elsevier, vol. 33(3), pages 467-490.
    3. Steffen, Bjarne, 2012. "Prospects for pumped-hydro storage in Germany," Energy Policy, Elsevier, vol. 45(C), pages 420-429.
    4. Nazari, M.E. & Ardehali, M.M. & Jafari, S., 2010. "Pumped-storage unit commitment with considerations for energy demand, economics, and environmental constraints," Energy, Elsevier, vol. 35(10), pages 4092-4101.
    5. Dursun, Bahtiyar & Alboyaci, Bora, 2010. "The contribution of wind-hydro pumped storage systems in meeting Turkey's electric energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1979-1988, September.
    6. Punys, Petras & Baublys, Raimundas & Kasiulis, Egidijus & Vaisvila, Andrius & Pelikan, Bernhard & Steller, Janusz, 2013. "Assessment of renewable electricity generation by pumped storage power plants in EU Member States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 190-200.
    7. Huang, Hailun & Yan, Zheng, 2009. "Present situation and future prospect of hydropower in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1652-1656, August.
    8. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    9. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    10. Thomas Hammons (ed.), 2009. "Renewable Energy," Books, IntechOpen, number 657.
    11. Sivakumar, N. & Das, Devadutta & Padhy, N.P. & Senthil Kumar, A.R. & Bisoyi, Nibedita, 2013. "Status of pumped hydro-storage schemes and its future in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 208-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    2. Jianxin Hu & Wenfeng Su & Ke Li & Kexin Wu & Ling Xue & Guolei He, 2023. "Transient Hydrodynamic Behavior of a Pump as Turbine with Varying Rotating Speed," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Xiaoxia Hou & Yongguang Cheng & Zhiyan Yang & Ke Liu & Xiaoxi Zhang & Demin Liu, 2021. "Influence of Clearance Flow on Dynamic Hydraulic Forces of Pump-Turbine during Runaway Transient Process," Energies, MDPI, vol. 14(10), pages 1-20, May.
    4. Linghao Meng & Jusen Asuka, 2022. "Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    5. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    6. Zhu, Hongtao & Gao, Xueping & Liu, Yinzhu & Liu, Shuai, 2023. "Numerical and experimental assessment of the water discharge segment in a pumped-storage power station," Energy, Elsevier, vol. 265(C).
    7. Leonardo Nibbi & Paolo Sospiro & Maurizio De Lucia & Cheng-Cheng Wu, 2022. "Improving Pumped Hydro Storage Flexibility in China: Scenarios for Advanced Solutions Adoption and Policy Recommendations," Energies, MDPI, vol. 15(21), pages 1-25, October.
    8. Yang, Shiwei & Zhang, Zhongwei & Ji, Qianfeng & Liang, Ruifeng & Li, Kefeng, 2023. "Study on the water temperature distribution characteristics of a mixed pumped storage power station reservoir: A case study of Jinshuitan Reservoir," Renewable Energy, Elsevier, vol. 202(C), pages 1012-1020.
    9. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2018. "An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 774-801.
    10. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    11. Topalović, Zejneba & Haas, Reinhard & Ajanović, Amela & Hiesl, Albert, 2022. "Economics of electric energy storage. The case of Western Balkans," Energy, Elsevier, vol. 238(PA).
    12. Zhiyan Yang & Yongguang Cheng & Ke Liu & Xiaoxia Hou & Xiaoxi Zhang & Xi Wang & Jinghuan Ding, 2021. "Three-Dimensional CFD Simulations of Start-Up Processes of a Pump-Turbine Considering Governor Regulation," Energies, MDPI, vol. 14(24), pages 1-19, December.
    13. Chen, Xiaojiao & Huang, Liansheng & Liu, Junbo & Song, Dongran & Yang, Sheng, 2022. "Peak shaving benefit assessment considering the joint operation of nuclear and battery energy storage power stations: Hainan case study," Energy, Elsevier, vol. 239(PA).
    14. He, YongXiu & Liu, Yang & Li, MoXing & Zhang, Yan, 2022. "Benefit evaluation and mechanism design of pumped storage plants under the background of power market reform - A case study of China," Renewable Energy, Elsevier, vol. 191(C), pages 796-806.
    15. Gong, Yu & Liu, Pan & Liu, Yini & Huang, Kangdi, 2021. "Robust operation interval of a large-scale hydro-photovoltaic power system to cope with emergencies," Applied Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    3. Shaohua Hu & Xinlong Zhou & Yi Luo & Guang Zhang, 2019. "Numerical Simulation Three-Dimensional Nonlinear Seepage in a Pumped-Storage Power Station: Case Study," Energies, MDPI, vol. 12(1), pages 1-15, January.
    4. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    5. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.
    6. Hunt, Julian David & Freitas, Marcos Aurélio Vasconcelos de & Pereira Junior, Amaro Olímpio, 2017. "A review of seasonal pumped-storage combined with dams in cascade in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 385-398.
    7. Yekini Suberu, Mohammed & Wazir Mustafa, Mohd & Bashir, Nouruddeen, 2014. "Energy storage systems for renewable energy power sector integration and mitigation of intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 499-514.
    8. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    9. Barbaros, Efe & Aydin, Ismail & Celebioglu, Kutay, 2021. "Feasibility of pumped storage hydropower with existing pricing policy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    10. Stenzel, Peter & Linssen, Jochen, 2016. "Concept and potential of pumped hydro storage in federal waterways," Applied Energy, Elsevier, vol. 162(C), pages 486-493.
    11. Zhang, Yuning & Tang, Ningning & Niu, Yuguang & Du, Xiaoze, 2016. "Wind energy rejection in China: Current status, reasons and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 322-344.
    12. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    13. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    14. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.
    15. Moradi, Jalal & Shahinzadeh, Hossein & Khandan, Amirsalar & Moazzami, Majid, 2017. "A profitability investigation into the collaborative operation of wind and underwater compressed air energy storage units in the spot market," Energy, Elsevier, vol. 141(C), pages 1779-1794.
    16. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    17. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
    18. Kougias, Ioannis & Szabó, Sándor, 2017. "Pumped hydroelectric storage utilization assessment: Forerunner of renewable energy integration or Trojan horse?," Energy, Elsevier, vol. 140(P1), pages 318-329.
    19. Benato, Alberto, 2017. "Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system," Energy, Elsevier, vol. 138(C), pages 419-436.
    20. Ming, Zeng & Kun, Zhang & Daoxin, Liu, 2013. "Overall review of pumped-hydro energy storage in China: Status quo, operation mechanism and policy barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 35-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:720-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.