IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2071-d1074705.html
   My bibliography  Save this article

Transient Hydrodynamic Behavior of a Pump as Turbine with Varying Rotating Speed

Author

Listed:
  • Jianxin Hu

    (National-Provincial Joint Engineering Laboratory for Fluid Transmission System Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Wenfeng Su

    (National-Provincial Joint Engineering Laboratory for Fluid Transmission System Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Ke Li

    (National-Provincial Joint Engineering Laboratory for Fluid Transmission System Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Kexin Wu

    (National-Provincial Joint Engineering Laboratory for Fluid Transmission System Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Ling Xue

    (National-Provincial Joint Engineering Laboratory for Fluid Transmission System Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Guolei He

    (Institute of Exploration Techniques, Chinese Academy of Geological Sciences, Langfang 065000, China)

Abstract

The working condition of a centrifugal pump as a turbine (PAT) is often unsteady. The rotating speed of a PAT constantly varies as the flow and load change, resulting in transient hydrodynamic behaviors between different working conditions. During the transition, the PAT undergoes a severe change in performance and complicated internal flow structures. In previous work, the fixed rotating speed of a PAT was mostly considered using computational fluid dynamics. To investigate the transient behavior of a PAT, relevant simulation tools are developed to depict transient flow conditions, and the corresponding transient speed of the impeller is calculated. Both large and small fluctuation transitions are simulated for the practical application of the PAT. The simulated results are first verified by experiments. The results show that the rotating speed significantly affects the performance and stability of the PAT. The rapid increment in flow rate and rotating speed lead to large energy dissipation in the internal flow field of the PAT. The range of high efficiency of the PAT expands and migrates to the high flow rate range. The efficiency in the transition condition started a cyclic growth after the flow reached 60 m 3 /h, and it reached a peak at around 80 m 3 /h, which was about 5% lower than the calculated value in a quasi-steady state. In the range of high rotating speeds, the rotating speed of the impeller and the operational stability are sensitive to flow fluctuation. The internal flow fields during transition conditions are analyzed as well. The obtained results can be utilized as a reference for studying the hydrodynamic characteristics and stability of fluid machinery in the transition under transient flow conditions.

Suggested Citation

  • Jianxin Hu & Wenfeng Su & Ke Li & Kexin Wu & Ling Xue & Guolei He, 2023. "Transient Hydrodynamic Behavior of a Pump as Turbine with Varying Rotating Speed," Energies, MDPI, vol. 16(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2071-:d:1074705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng Chen & Jian Zhang & Gaohui Li & Xiaodong Yu, 2019. "Influence Mechanism of Geometric Characteristics of Water Conveyance System on Extreme Water Hammer during Load Rejection in Pumped Storage Plants," Energies, MDPI, vol. 12(15), pages 1-22, July.
    2. Su, Xianghui & Huang, Si & Zhang, Xuejiao & Yang, Sunsheng, 2016. "Numerical research on unsteady flow rate characteristics of pump as turbine," Renewable Energy, Elsevier, vol. 94(C), pages 488-495.
    3. Feng, Jianjun & Ge, Zhenguo & Zhang, Yu & Zhu, Guojun & Wu, Guangkuan & Lu, Jinling & Luo, Xingqi, 2021. "Numerical investigation on characteristics of transient process in centrifugal pumps during power failure," Renewable Energy, Elsevier, vol. 170(C), pages 267-276.
    4. Kong, Yigang & Kong, Zhigang & Liu, Zhiqi & Wei, Congmei & Zhang, Jingfang & An, Gaocheng, 2017. "Pumped storage power stations in China: The past, the present, and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 720-731.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João M. R. Catelas & João F. P. Fernandes & Modesto Pérez-Sánchez & P. Amparo López-Jiménez & Helena M. Ramos & P. J. Costa Branco, 2024. "Energy Efficiency and Stability of Micro-Hydropower PAT-SEIG Systems for DC Off-Grids," Energies, MDPI, vol. 17(6), pages 1-25, March.
    2. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    3. Abdulbasit Nasir & Edessa Dribssa & Misrak Girma & Habtamu Bayera Madessa, 2023. "Selection and Performance Prediction of a Pump as a Turbine for Power Generation Applications," Energies, MDPI, vol. 16(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiehao Duan & Changjun Li & Jin Jin, 2022. "Establishment and Solution of Four Variable Water Hammer Mathematical Model for Conveying Pipe," Energies, MDPI, vol. 15(4), pages 1-21, February.
    2. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    3. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    4. Xiaoxia Hou & Yongguang Cheng & Zhiyan Yang & Ke Liu & Xiaoxi Zhang & Demin Liu, 2021. "Influence of Clearance Flow on Dynamic Hydraulic Forces of Pump-Turbine during Runaway Transient Process," Energies, MDPI, vol. 14(10), pages 1-20, May.
    5. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    6. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2018. "An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 774-801.
    7. Gong, Yu & Liu, Pan & Liu, Yini & Huang, Kangdi, 2021. "Robust operation interval of a large-scale hydro-photovoltaic power system to cope with emergencies," Applied Energy, Elsevier, vol. 290(C).
    8. Hongyu, Guan & Wei, Jiang & Yuchuan, Wang & Hui, Tian & Ting, Li & Diyi, Chen, 2021. "Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 21-30.
    9. Du, Jiyun & Yang, Hongxing & Shen, Zhicheng & Chen, Jian, 2017. "Micro hydro power generation from water supply system in high rise buildings using pump as turbines," Energy, Elsevier, vol. 137(C), pages 431-440.
    10. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    11. He, Xianghui & Hu, Jinhong & Zhao, Zhigao & Lin, Jie & Xiao, Pengfei & Yang, Jiandong & Yang, Jiebin, 2023. "Water column separation under one-after-another load rejection in pumped storage station," Energy, Elsevier, vol. 278(C).
    12. Cui, Zilong & Guo, Wencheng, 2023. "Multi-objective control of transient process of hydropower plant with two turbines sharing one penstock under combined operating conditions," Renewable Energy, Elsevier, vol. 206(C), pages 1275-1288.
    13. Carravetta, A. & Fecarotta, O. & Ramos, H.M., 2018. "A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas," Renewable Energy, Elsevier, vol. 125(C), pages 1003-1014.
    14. Sengpanich, K. & Bohez, Erik L.J. & Thongkruer, P. & Sakulphan, K., 2019. "New mode to operate centrifugal pump as impulse turbine," Renewable Energy, Elsevier, vol. 140(C), pages 983-993.
    15. Leonardo Nibbi & Paolo Sospiro & Maurizio De Lucia & Cheng-Cheng Wu, 2022. "Improving Pumped Hydro Storage Flexibility in China: Scenarios for Advanced Solutions Adoption and Policy Recommendations," Energies, MDPI, vol. 15(21), pages 1-25, October.
    16. Topalović, Zejneba & Haas, Reinhard & Ajanović, Amela & Hiesl, Albert, 2022. "Economics of electric energy storage. The case of Western Balkans," Energy, Elsevier, vol. 238(PA).
    17. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    18. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    19. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    20. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2071-:d:1074705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.