IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1382-d1356214.html
   My bibliography  Save this article

Energy Efficiency and Stability of Micro-Hydropower PAT-SEIG Systems for DC Off-Grids

Author

Listed:
  • João M. R. Catelas

    (Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • João F. P. Fernandes

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Modesto Pérez-Sánchez

    (Hydraulic and Environmental Engineering Department, Universitat Politècnica de València, 46022 Valencia, Spain)

  • P. Amparo López-Jiménez

    (Hydraulic and Environmental Engineering Department, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Helena M. Ramos

    (Department of Civil Engineering, Architecture and Environment, CERIS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • P. J. Costa Branco

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

Abstract

Using pumps operating as turbines (PATs) offers the possibility of increasing the sustainability of water and energy systems by recovering the excess energy that would be otherwise lost in pressure-reducing valves or head loss chambers. Regarding on-grid applications, there have been many research works, and PATs have been implemented in several ways. However, more research still needs to be done on optimizing the efficiency and stability of PATs operating in off-grid systems. This work contributes to the development of stable direct current (DC) off-grid electric systems based on PATs using a self-excited induction generator (SEIG). In this context, a methodology is proposed, based on the hydraulic, mechanical, and electric subsystems, to define the PAT-SEIG operational area to maximize energy conversion and system efficiency. These limits depend highly on the capacitor value, rotational speed, and electric load. In addition, an analytical model is proposed to estimate the PAT-SEIG operation under specific conditions. With this, water managers can design and optimize an off-grid PAT-SEIG system and define the best hydraulic machines, electronic equipment, and control elements to maximize energy conversion within the target of operational limits. Two micro PAT-SEIG setups were implemented in the hydraulic laboratory of IST/CERIS under typical operating conditions to validate the proposed methodology. The system’s maximum efficiency and operational limits can be adapted using different capacitor values for the excitation of the SEIG. Considering the nominal efficiencies of the system’s components, the maximum p.u. efficiency obtained for each PAT-SEIG system was between 0.7 and 0.8 p.u.

Suggested Citation

  • João M. R. Catelas & João F. P. Fernandes & Modesto Pérez-Sánchez & P. Amparo López-Jiménez & Helena M. Ramos & P. J. Costa Branco, 2024. "Energy Efficiency and Stability of Micro-Hydropower PAT-SEIG Systems for DC Off-Grids," Energies, MDPI, vol. 17(6), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1382-:d:1356214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.
    2. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    3. Meha, Drilon & Pfeifer, Antun & Sahiti, Naser & Rolph Schneider, Daniel & Duić, Neven, 2021. "Sustainable transition pathways with high penetration of variable renewable energy in the coal-based energy systems," Applied Energy, Elsevier, vol. 304(C).
    4. Williams, A.A., 1996. "Pumps as turbines for low cost micro hydro power," Renewable Energy, Elsevier, vol. 9(1), pages 1227-1234.
    5. Morabito, Alessandro & Hendrick, Patrick, 2019. "Pump as turbine applied to micro energy storage and smart water grids: A case study," Applied Energy, Elsevier, vol. 241(C), pages 567-579.
    6. Jianxin Hu & Wenfeng Su & Ke Li & Kexin Wu & Ling Xue & Guolei He, 2023. "Transient Hydrodynamic Behavior of a Pump as Turbine with Varying Rotating Speed," Energies, MDPI, vol. 16(4), pages 1-17, February.
    7. Kostner, Michael K. & Zanfei, Ariele & Alberizzi, Jacopo C. & Renzi, Massimiliano & Righetti, Maurizio & Menapace, Andrea, 2023. "Micro hydro power generation in water distribution networks through the optimal pumps-as-turbines sizing and control," Applied Energy, Elsevier, vol. 351(C).
    8. I. Karadirek & S. Kara & G. Yilmaz & A. Muhammetoglu & H. Muhammetoglu, 2012. "Implementation of Hydraulic Modelling for Water-Loss Reduction Through Pressure Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2555-2568, July.
    9. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    10. Abdulbasit Nasir & Edessa Dribssa & Misrak Girma & Habtamu Bayera Madessa, 2023. "Selection and Performance Prediction of a Pump as a Turbine for Power Generation Applications," Energies, MDPI, vol. 16(13), pages 1-16, June.
    11. Capelo, Bernardo & Pérez-Sánchez, Modesto & Fernandes, João F.P. & Ramos, Helena M. & López-Jiménez, P. Amparo & Branco, P.J. Costa, 2017. "Electrical behaviour of the pump working as turbine in off grid operation," Applied Energy, Elsevier, vol. 208(C), pages 302-311.
    12. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Adetokun, B.B., 2017. "Optimal capacitance selection for a wind-driven self-excited reluctance generator under varying wind speed and load conditions," Applied Energy, Elsevier, vol. 190(C), pages 339-353.
    13. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena M. Ramos, 2013. "PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation," Energies, MDPI, vol. 6(1), pages 1-14, January.
    14. Mario Amelio & Silvio Barbarelli & Domenico Schinello, 2020. "Review of Methods Used for Selecting Pumps as Turbines (PATs) and Predicting Their Characteristic Curves," Energies, MDPI, vol. 13(23), pages 1-20, December.
    15. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balacco, Gabriella & Fiorese, Gaetano Daniele & Alfio, Maria Rosaria & Totaro, Vincenzo & Binetti, Mario & Torresi, Marco & Stefanizzi, Michele, 2023. "PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network," Energy, Elsevier, vol. 282(C).
    2. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    3. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    4. Postacchini, Matteo & Di Giuseppe, Elisa & Eusebi, Anna Laura & Pelagalli, Leonardo & Darvini, Giovanna & Cipolletta, Giulia & Fatone, Francesco, 2022. "Energy saving from small-sized urban contexts: Integrated application into the domestic water cycle," Renewable Energy, Elsevier, vol. 199(C), pages 1300-1317.
    5. Davi Edson Sales Souza & André Luiz Amarante Mesquita & Claudio José Cavalcante Blanco, 2023. "Pressure Regulation in a Water Distribution Network Using Pumps as Turbines at Variable Speed for Energy Recovery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1183-1206, February.
    6. Telikani, Akbar & Rossi, Mosé & Khajehali, Naghmeh & Renzi, Massimiliano, 2023. "Pumps-as-Turbines’ (PaTs) performance prediction improvement using evolutionary artificial neural networks," Applied Energy, Elsevier, vol. 330(PA).
    7. Martin Polák, 2019. "The Influence of Changing Hydropower Potential on Performance Parameters of Pumps in Turbine Mode," Energies, MDPI, vol. 12(11), pages 1-12, June.
    8. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
    9. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Hongyu, Guan & Wei, Jiang & Yuchuan, Wang & Hui, Tian & Ting, Li & Diyi, Chen, 2021. "Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 21-30.
    11. Longyan Wang & Stephen Ntiri Asomani & Jianping Yuan & Desmond Appiah, 2020. "Geometrical Optimization of Pump-As-Turbine (PAT) Impellers for Enhancing Energy Efficiency with 1-D Theory," Energies, MDPI, vol. 13(16), pages 1-30, August.
    12. Silvio Barbarelli & Vincenzo Pisano & Mario Amelio, 2022. "Development of a Predicting Model for Calculating the Geometry and the Characteristic Curves of Pumps Running as Turbines in Both Operating Modes," Energies, MDPI, vol. 15(7), pages 1-28, April.
    13. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    14. Pugliese, Francesco & Fontana, Nicola & Marini, Gustavo & Giugni, Maurizio, 2021. "Experimental assessment of the impact of number of stages on vertical axis multi-stage centrifugal PATs," Renewable Energy, Elsevier, vol. 178(C), pages 891-903.
    15. Mercedes Garcia, Angel V. & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Pérez-Sánchez, Modesto, 2022. "A new optimization approach for the use of hybrid renewable systems in the search of the zero net energy consumption in water irrigation systems," Renewable Energy, Elsevier, vol. 195(C), pages 853-871.
    16. Rossi, Mosè & Spedaletti, Samuele & Lorenzetti, Matteo & Salvi, Danilo & Renzi, Massimiliano & Comodi, Gabriele & Caresana, Flavio & Pelagalli, Leonardo, 2021. "A methodology to estimate average flow rates in Water Supply Systems (WSSs) for energy recovery purposes through hydropower solutions," Renewable Energy, Elsevier, vol. 180(C), pages 1101-1113.
    17. Diamantis Karakatsanis & Nicolaos Theodossiou, 2022. "Smart Hydropower Water Distribution Networks, Use of Artificial Intelligence Methods and Metaheuristic Algorithms to Generate Energy from Existing Water Supply Networks," Energies, MDPI, vol. 15(14), pages 1-21, July.
    18. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    19. Le Marre, Maël & Mandin, Philippe & Lanoisellé, Jean-Louis & Zilliox, Erik & Rammal, Farah & Kim, Myeongsub (Mike) & Inguanta, Rosalinda, 2022. "Pumps as turbines regulation study through a decision-support algorithm," Renewable Energy, Elsevier, vol. 194(C), pages 561-570.
    20. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1382-:d:1356214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.