IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037034.html
   My bibliography  Save this article

Experimental investigation of the impact of blade number on energy performance and pressure fluctuation in a high-speed coolant pump for electric vehicles

Author

Listed:
  • Gu, Yandong
  • Wang, Dongcheng
  • Wang, Qiliang
  • Ding, Peng
  • Ji, Qingfeng
  • Cheng, Li

Abstract

The high-speed coolant pump is a critical component of the thermal management system in electric vehicles, responsible for circulating coolant to regulate the temperature of batteries. However, the impact of the impeller blade number on the energy performance and pressure fluctuation of high-speed pumps is still undetermined. An experimental bench for coolant pumps of high rotational speeds is built, a mathematical model of the theoretical head is proposed, and comprehensive studies on blade numbers (Z) ranging from 2 to 7 are conducted. Both head-curve and efficiency-curve decline as the blade number decreases, with the reduction rate progressively increasing. At the design flow rate, the head and efficiency for Z = 6 are 12.3 m and 66.4 %, respectively, with the hydraulic performance of Z = 7 being close to that of Z = 6. For each blade number, integer multiples of the impeller rotation frequency dominate. Z = 6 has the smallest amplitude at the blade passing frequency and impeller rotation frequency, with a 30.7 % reduction compared to Z = 7 at the design condition. Z = 6 is identified as the optimal solution, considering energy performance and pressure stability. This research greatly promotes the development of energy-saving and low-noise pumps.

Suggested Citation

  • Gu, Yandong & Wang, Dongcheng & Wang, Qiliang & Ding, Peng & Ji, Qingfeng & Cheng, Li, 2024. "Experimental investigation of the impact of blade number on energy performance and pressure fluctuation in a high-speed coolant pump for electric vehicles," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037034
    DOI: 10.1016/j.energy.2024.133925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    2. Wu, Chengshuo & Pu, Kexin & Li, Changqin & Wu, Peng & Huang, Bin & Wu, Dazhuan, 2022. "Blade redesign based on secondary flow suppression to improve energy efficiency of a centrifugal pump," Energy, Elsevier, vol. 246(C).
    3. Kim, Soohwan & Jeong, Hoyoung & Lee, Hoseong, 2021. "Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems," Energy, Elsevier, vol. 232(C).
    4. Wei Li & Leilei Ji & Weidong Shi & Ling Zhou & Hao Chang & Ramesh K. Agarwal, 2020. "Expansion of High Efficiency Region of Wind Energy Centrifugal Pump Based on Factorial Experiment Design and Computational Fluid Dynamics," Energies, MDPI, vol. 13(2), pages 1-24, January.
    5. Yang, Gang & Shen, Xi & Pan, Qiang & Geng, Linlin & Shi, Lei & Xu, Bin & Zhang, Desheng, 2024. "Investigation on passive suppression method of hump characteristics in a large vertical volute centrifugal pump: Using combined diffuser vane structure," Energy, Elsevier, vol. 304(C).
    6. Wang, Tao & Liu, Yunqi & Dong, Yuancheng & Xiang, Ru & Bai, Yuxing, 2024. "The influence of the middle bending shape of the blade on the performance of a pump as turbine," Energy, Elsevier, vol. 295(C).
    7. Zhang, Liwen & Wang, Xin & Wu, Peng & Huang, Bin & Wu, Dazhuan, 2023. "Optimization of a centrifugal pump to improve hydraulic efficiency and reduce hydro-induced vibration," Energy, Elsevier, vol. 268(C).
    8. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    9. Lee, Sangwook & Chung, Yoong & Lee, Yoo Il & Jeong, Yeonwoo & Kim, Min Soo, 2023. "Battery thermal management strategy utilizing a secondary heat pump in electric vehicle under cold-start conditions," Energy, Elsevier, vol. 269(C).
    10. Yuan, Zhiyi & Zhang, Yongxue & Zhou, Wenbo & Zhang, Jinya & Zhu, Jianjun, 2024. "Optimization of a centrifugal pump with high efficiency and low noise based on fast prediction method and vortex control," Energy, Elsevier, vol. 289(C).
    11. Feng, Jianjun & Ge, Zhenguo & Zhang, Yu & Zhu, Guojun & Wu, Guangkuan & Lu, Jinling & Luo, Xingqi, 2021. "Numerical investigation on characteristics of transient process in centrifugal pumps during power failure," Renewable Energy, Elsevier, vol. 170(C), pages 267-276.
    12. Li, Xiaojun & Chen, Bo & Luo, Xianwu & Zhu, Zuchao, 2020. "Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump," Renewable Energy, Elsevier, vol. 151(C), pages 475-487.
    13. Lu, Yangping & Tan, Lei, 2024. "Design method based on a new slip-diffusion parameter of centrifugal pump for multiple conditions in wide operation region," Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    2. Ma, Pengfei & Li, Lei & Wang, Bin & Wang, Haifeng & Yu, Jun & Liang, Liwei & Xie, Chenyu & Tang, Yiming, 2024. "Optimization of submersible LNG centrifugal pump blades design based on support vector regression and the non-dominated sorting genetic algorithm Ⅱ," Energy, Elsevier, vol. 313(C).
    3. Heng, Yaguang & Chen, Zhengsu & Jiang, Qifeng & Bois, Gérard & Zhang, Weibin & He, Kunjian, 2024. "Performance and internal flow pattern analyses of a specific centrifugal disc pump under air-water two-phase flow conditions," Energy, Elsevier, vol. 309(C).
    4. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    5. Zhao, Jiantao & Pei, Ji & Wang, Wenjie & Gan, Xingcheng, 2024. "Blade redesign based on inverse design method for energy performance improvement and hydro-induced vibration suppression of a multi-stage centrifugal pump," Energy, Elsevier, vol. 308(C).
    6. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    7. Li, Xiaojun & Chen, Hui & Chen, Bo & Luo, Xianwu & Yang, Baofeng & Zhu, Zuchao, 2020. "Investigation of flow pattern and hydraulic performance of a centrifugal pump impeller through the PIV method," Renewable Energy, Elsevier, vol. 162(C), pages 561-574.
    8. Fernández Oro, J.M. & Barrio Perotti, R. & Galdo Vega, M. & González, J., 2023. "Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions," Energy, Elsevier, vol. 278(PA).
    9. Ko, Jaedeok & Jeong, Ji Hwan, 2024. "Status and challenges of vapor compression air conditioning and heat pump systems for electric vehicles," Applied Energy, Elsevier, vol. 375(C).
    10. Haoqing Jiang & Wei Dong & Peixuan Li & Haichen Zhang, 2023. "Based on Wavelet and Windowed Multi-Resolution Dynamic Mode Decomposition, Transient Axial Force Analysis of a Centrifugal Pump under Variable Operating Conditions," Energies, MDPI, vol. 16(20), pages 1-25, October.
    11. Lu, Yangping & Tan, Lei, 2024. "Design method based on a new slip-diffusion parameter of centrifugal pump for multiple conditions in wide operation region," Energy, Elsevier, vol. 294(C).
    12. Zhang, Xiaowen & Tang, Fangping & Pavesi, Giorgio & Hu, Chongyang & Song, Xijie, 2024. "Influence of gate cutoff effect on flow mode conversion and energy dissipation during power-off of prototype tubular pump system," Energy, Elsevier, vol. 308(C).
    13. Pan, Qiang & Wu, Yuehu & Zhang, Desheng & Shi, Weidong & van Esch, B.P.M., 2024. "Coordination of energy loss and fish friendliness for a low-head tubular-pump blade based on a multi-objective optimization model," Renewable Energy, Elsevier, vol. 237(PB).
    14. Wu, Jiafeng & Li, Lin & Yin, Zichao & Li, Zhe & Wang, Tong & Tan, Yunfeng & Tan, Dapeng, 2024. "Mass transfer mechanism of multiphase shear flows and interphase optimization solving method," Energy, Elsevier, vol. 292(C).
    15. Li, Yanyan & Sun, Longgang & Guo, Pengcheng, 2024. "Investigation of the transient characteristics of the Francis turbine during runaway process," Renewable Energy, Elsevier, vol. 237(PC).
    16. Ma, Tiancai & Du, Chang & Li, Ruitao & Tang, Xingwang & Su, Jianbin & Qian, Liqin & Shi, Lei, 2025. "Study on the redistribution mechanism and secondary purge strategy of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 378(PA).
    17. Chen, Weisheng & Xiang, Qiujie & Li, Yaojun & Liu, Zhuqing, 2023. "On the mechanisms of pressure drop and viscous losses in hydrofoil tip-clearance flows," Energy, Elsevier, vol. 269(C).
    18. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    19. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).
    20. Fan Zhang & Lufeng Zhu & Ke Chen & Weicheng Yan & Desmond Appiah & Bo Hu, 2020. "Numerical Simulation of Gas–Liquid Two-Phase Flow Characteristics of Centrifugal Pump Based on the CFD–PBM," Mathematics, MDPI, vol. 8(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.