IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223032292.html
   My bibliography  Save this article

Optimization of a centrifugal pump with high efficiency and low noise based on fast prediction method and vortex control

Author

Listed:
  • Yuan, Zhiyi
  • Zhang, Yongxue
  • Zhou, Wenbo
  • Zhang, Jinya
  • Zhu, Jianjun

Abstract

This study aims to develop a rapid optimization design method for the centrifugal pump with high efficiency and low noise. The improved delayed detached eddy simulation and Powell's vortex sound method were employed to calculate the flow and sound field. The prediction models of hydraulic loss and noise based on vortex characteristic quantities were built using linear regression (LR) and artificial neural network (ANN) methods respectively. The Kriging surrogate model and the NSGA-II genetic algorithm were utilized for minimizing the entropy production rate and average total sound pressure in the pump, where the objectives of the training dataset for Kriging model were calculated by prediction model (scheme I) and conventional unsteady numerical simulation (scheme II). Results show that the structure and performance of optimized pumps under both schemes are nearly identical, but the computational cost of scheme Iis much lower than that of scheme II. The shear of the optimized pump is significantly reduced and the rigid rotational strength is enhanced, leading to head and efficiency improved by 3.2 % and 3.7 % respectively, under the design flow condition. The average total sound pressure level is reduced by 1.07 % due to the fluctuation suppression of shear and rigid vorticity.

Suggested Citation

  • Yuan, Zhiyi & Zhang, Yongxue & Zhou, Wenbo & Zhang, Jinya & Zhu, Jianjun, 2024. "Optimization of a centrifugal pump with high efficiency and low noise based on fast prediction method and vortex control," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032292
    DOI: 10.1016/j.energy.2023.129835
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.