IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7176-d1264243.html
   My bibliography  Save this article

Based on Wavelet and Windowed Multi-Resolution Dynamic Mode Decomposition, Transient Axial Force Analysis of a Centrifugal Pump under Variable Operating Conditions

Author

Listed:
  • Haoqing Jiang

    (College of Water Resources and Architectural Engineering, Northwest A & F University, Xianyang 712100, China)

  • Wei Dong

    (College of Water Resources and Architectural Engineering, Northwest A & F University, Xianyang 712100, China
    State Key Laboratory of Hydroelectric Power Equipment, Harbin 150040, China)

  • Peixuan Li

    (College of Water Resources and Architectural Engineering, Northwest A & F University, Xianyang 712100, China)

  • Haichen Zhang

    (College of Water Resources and Architectural Engineering, Northwest A & F University, Xianyang 712100, China)

Abstract

This study analyzes the transient axial force of a centrifugal pump under variable operating conditions using wavelet analysis and a novel technique called windowed multi-resolution dynamic mode decomposition (wmrDMD). Numerically simulating the sampled time series allows the reconstruction of the impeller’s axial force information, providing validation for this innovative data-driven analysis technique. The comparison between the reconstructed results and the original axial force data demonstrates a remarkable agreement, as all data points exhibit error values below 2.49%. The wmrDMD technique systematically decomposes the impeller’s axial force field into dynamically significant modes across various time scales. Removing the mean flow field in this study resolves the transient motion of the impeller’s axial force, facilitating the identification of positions with high-frequency axial force oscillations and fluctuations in intensity amplitude. The high-frequency axial force of the impeller exhibits stable periodic variations within the operating range of 1.0 n r -1.0 Q r , whereas the changes are insignificant within the range of 0.4 n r -0.4 Q r . However, within the operating range of 1.0 n r -0.4 Q r , both the position and intensity amplitude of the axial force exhibit significant variations without a stable trend. Furthermore, cross-wavelet and wavelet coherence analyses reveal that within the operating range of 0.4 n r -0.4 Q r , the axial forces on the front and rear cover plates show the strongest correlation at the periodic scale. Within the operating range of 1.0 n r -1.0 Q r , the next highest correlation is observed, whereas the correlation is lowest within the 1.0 n r -0.4 Q r operating range.

Suggested Citation

  • Haoqing Jiang & Wei Dong & Peixuan Li & Haichen Zhang, 2023. "Based on Wavelet and Windowed Multi-Resolution Dynamic Mode Decomposition, Transient Axial Force Analysis of a Centrifugal Pump under Variable Operating Conditions," Energies, MDPI, vol. 16(20), pages 1-25, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7176-:d:1264243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
    2. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    3. Yi-bin Li & Chang-hong He & Jian-zhong Li, 2019. "Study on Flow Characteristics in Volute of Centrifugal Pump Based on Dynamic Mode Decomposition," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-15, April.
    4. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    5. Jiang, Bo & Sun, Guoyong & Wang, Yuchuan & Mao, Xiuli & Tan, Lei, 2022. "Coherent structures decomposition of the flow field in Francis turbine runner under different working conditions," Renewable Energy, Elsevier, vol. 186(C), pages 717-729.
    6. Xinfeng Ge & Jing Zhang & Jian Zhang & Demin Liu & Yuan Zheng & Huixiang Chen, 2022. "Review of Research on the Three-Dimensional Transition Process of Large-Scale Low-Lift Pump," Energies, MDPI, vol. 15(22), pages 1-34, November.
    7. Feng, Jianjun & Ge, Zhenguo & Zhang, Yu & Zhu, Guojun & Wu, Guangkuan & Lu, Jinling & Luo, Xingqi, 2021. "Numerical investigation on characteristics of transient process in centrifugal pumps during power failure," Renewable Energy, Elsevier, vol. 170(C), pages 267-276.
    8. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    2. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    3. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    4. Huang, Zhenwei & Huang, Zhenyou & Fan, Honggang, 2020. "Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance," Renewable Energy, Elsevier, vol. 159(C), pages 726-735.
    5. Kandi, Ali & Meirelles, Gustavo & Brentan, Bruno, 2022. "Employing demand prediction in pump as turbine plant design regarding energy recovery enhancement," Renewable Energy, Elsevier, vol. 187(C), pages 223-236.
    6. Jiang, Bo & Sun, Guoyong & Wang, Yuchuan & Mao, Xiuli & Tan, Lei, 2022. "Coherent structures decomposition of the flow field in Francis turbine runner under different working conditions," Renewable Energy, Elsevier, vol. 186(C), pages 717-729.
    7. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).
    8. Moazeni, Faegheh & Khazaei, Javad, 2021. "Optimal energy management of water-energy networks via optimal placement of pumps-as-turbines and demand response through water storage tanks," Applied Energy, Elsevier, vol. 283(C).
    9. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    10. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    11. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    12. Honggang Fan & Jinsong Zhang & Wei Zhang & Bing Liu, 2020. "Multiparameter and Multiobjective Optimization Design Based on Orthogonal Method for Mixed Flow Fan," Energies, MDPI, vol. 13(11), pages 1-15, June.
    13. Davi Edson Sales Souza & André Luiz Amarante Mesquita & Claudio José Cavalcante Blanco, 2023. "Pressure Regulation in a Water Distribution Network Using Pumps as Turbines at Variable Speed for Energy Recovery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1183-1206, February.
    14. Pu, Kexin & Huang, Bin & Miao, Hongjiang & Shi, Peili & Wu, Dazhuan, 2022. "Quantitative analysis of energy loss and vibration performance in a circulating axial pump," Energy, Elsevier, vol. 243(C).
    15. Su, Wen-Tao & Li, Yang & Wang, Ya-Hui & Zhang, Ya-Ning & Li, Xiao-Bin & Ma, Yu, 2020. "Influence of structural parameters on wavy-tilt-dam hydrodynamic mechanical seal performance in reactor coolant pump," Renewable Energy, Elsevier, vol. 166(C), pages 210-221.
    16. Bozorgasareh, Hamidreza & Khalesi, Javad & Jafari, Mohammad & Gazori, Heshmat Olah, 2021. "Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 163(C), pages 635-648.
    17. Wei Zang & Yuan Zheng & Yuquan Zhang & Xiangfeng Lin & Yanwei Li & Emmanuel Fernandez-Rodriguez, 2022. "Numerical Investigation on a Diffuser-Augmented Horizontal Axis Tidal Stream Turbine with the Entropy Production Theory," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    18. Telikani, Akbar & Rossi, Mosé & Khajehali, Naghmeh & Renzi, Massimiliano, 2023. "Pumps-as-Turbines’ (PaTs) performance prediction improvement using evolutionary artificial neural networks," Applied Energy, Elsevier, vol. 330(PA).
    19. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    20. Li, Xiaojun & Chen, Hui & Chen, Bo & Luo, Xianwu & Yang, Baofeng & Zhu, Zuchao, 2020. "Investigation of flow pattern and hydraulic performance of a centrifugal pump impeller through the PIV method," Renewable Energy, Elsevier, vol. 162(C), pages 561-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7176-:d:1264243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.