IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2854-d251298.html
   My bibliography  Save this article

Influence Mechanism of Geometric Characteristics of Water Conveyance System on Extreme Water Hammer during Load Rejection in Pumped Storage Plants

Author

Listed:
  • Sheng Chen

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

  • Jian Zhang

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

  • Gaohui Li

    (Powerchina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Xiaodong Yu

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

Abstract

Pumped storage plants (PSPs) have achieved rapid development and deployment worldwide since the penetration of intermittent renewable energy sources (RES). Hydraulic transient analysis in the PSP, to obtain the control parameters such as extreme water hammer pressure, is vital to the safe design of water conveyance system. Empirically, simultaneous load rejection (SLR) is commonly accepted as the control condition for extreme water hammer, while it is not completely true for the PSP. Employing theoretical analysis and numerical simulation, this study systematically investigates the effects of geometric characteristics on the extreme water hammer, and reveals the mechanism leading to the maximum spiral case pressure (SCP) during a two-stage load rejection (TLR) process. The results indicate that the extreme water hammer pressure is closely related to geometric characteristics of the water conveyance system, performing the allocation of the water inertia time constant of the main and branch pipelines. When the water inertia time constant in the branch pipe is dominant ( η 1 > 0.24 for example), the maximum SCP will occur in TLR conditions rather than SLR. Moreover, the maximum SCP is almost the same, providing the water inertia time constants of both the main and branch pipelines are kept constant.

Suggested Citation

  • Sheng Chen & Jian Zhang & Gaohui Li & Xiaodong Yu, 2019. "Influence Mechanism of Geometric Characteristics of Water Conveyance System on Extreme Water Hammer during Load Rejection in Pumped Storage Plants," Energies, MDPI, vol. 12(15), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2854-:d:251298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Weijia Yang & Jiandong Yang & Wencheng Guo & Wei Zeng & Chao Wang & Linn Saarinen & Per Norrlund, 2015. "A Mathematical Model and Its Application for Hydro Power Units under Different Operating Conditions," Energies, MDPI, vol. 8(9), pages 1-16, September.
    3. Chaudhary, Priyanka & Rizwan, M., 2018. "Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system," Renewable Energy, Elsevier, vol. 118(C), pages 928-946.
    4. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    5. Daqing Zhou & Huixiang Chen & Languo Zhang, 2018. "Investigation of Pumped Storage Hydropower Power-Off Transient Process Using 3D Numerical Simulation Based on SP-VOF Hybrid Model," Energies, MDPI, vol. 11(4), pages 1-16, April.
    6. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    7. Zeng, Wei & Yang, Jiandong & Yang, Weijia, 2016. "Instability analysis of pumped-storage stations under no-load conditions using a parameter-varying model," Renewable Energy, Elsevier, vol. 90(C), pages 420-429.
    8. Rezghi, Ali & Riasi, Alireza, 2018. "The interaction effect of hydraulic transient conditions of two parallel pump-turbine units in a pumped-storage power plant with considering “S-shaped” instability region: Numerical simulation," Renewable Energy, Elsevier, vol. 118(C), pages 896-908.
    9. Rezghi, A. & Riasi, A., 2016. "Sensitivity analysis of transient flow of two parallel pump-turbines operating at runaway," Renewable Energy, Elsevier, vol. 86(C), pages 611-622.
    10. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    11. Ghasemi, Ahmad & Enayatzare, Mehdi, 2018. "Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response," Renewable Energy, Elsevier, vol. 123(C), pages 460-474.
    12. Zeng, Wei & Yang, Jiandong & Tang, Renbo & Yang, Weijia, 2016. "Extreme water-hammer pressure during one-after-another load shedding in pumped-storage stations," Renewable Energy, Elsevier, vol. 99(C), pages 35-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiehao Duan & Changjun Li & Jin Jin, 2022. "Establishment and Solution of Four Variable Water Hammer Mathematical Model for Conveying Pipe," Energies, MDPI, vol. 15(4), pages 1-21, February.
    2. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    3. Jianxin Hu & Wenfeng Su & Ke Li & Kexin Wu & Ling Xue & Guolei He, 2023. "Transient Hydrodynamic Behavior of a Pump as Turbine with Varying Rotating Speed," Energies, MDPI, vol. 16(4), pages 1-17, February.
    4. Sorin-Ioan Lupa & Martin Gagnon & Sebastian Muntean & Georges Abdul-Nour, 2022. "The Impact of Water Hammer on Hydraulic Power Units," Energies, MDPI, vol. 15(4), pages 1-27, February.
    5. Cui, Zilong & Guo, Wencheng, 2023. "Multi-objective control of transient process of hydropower plant with two turbines sharing one penstock under combined operating conditions," Renewable Energy, Elsevier, vol. 206(C), pages 1275-1288.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    2. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    3. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Hu, Jinhong & Yang, Jiebin & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2021. "Hydraulic interaction of two parallel pump-turbines in constant-speed oscillation: Measurement, simulation, and sensitivity analysis," Renewable Energy, Elsevier, vol. 176(C), pages 269-279.
    5. Lai, Xinjie & Li, Chaoshun & Zhou, Jianzhong & Zhang, Yongchuan & Li, Yonggang, 2020. "A multi-objective optimization strategy for the optimal control scheme of pumped hydropower systems under successive load rejections," Applied Energy, Elsevier, vol. 261(C).
    6. Saidi Kais & Ben Mbarek Mounir, 2017. "Causal interactions between environmental degradation, renewable energy, nuclear energy and real GDP: a dynamic panel data approach," Environment Systems and Decisions, Springer, vol. 37(1), pages 51-67, March.
    7. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    8. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    10. Gozgor, Giray & Paramati, Sudharshan Reddy, 2022. "Does energy diversification cause an economic slowdown? Evidence from a newly constructed energy diversification index," Energy Economics, Elsevier, vol. 109(C).
    11. Hu, ZhiWen & Wang, HanYi, 2024. "Feasibility study of energy storage using hydraulic fracturing in shale formations," Applied Energy, Elsevier, vol. 354(PB).
    12. Zeng, Wei & Yang, Jiandong & Tang, Renbo & Yang, Weijia, 2016. "Extreme water-hammer pressure during one-after-another load shedding in pumped-storage stations," Renewable Energy, Elsevier, vol. 99(C), pages 35-44.
    13. Liu, Baonan & Zhou, Jianzhong & Xu, Yanhe & Lai, Xinjie & Shi, Yousong & Li, Mengyao, 2022. "An optimization decision-making framework for the optimal operation strategy of pumped storage hydropower system under extreme conditions," Renewable Energy, Elsevier, vol. 182(C), pages 254-273.
    14. Guilera, Jordi & Andreu, Teresa & Basset, Núria & Boeltken, Tim & Timm, Friedemann & Mallol, Ignasi & Morante, Joan Ramon, 2020. "Synthetic natural gas production from biogas in a waste water treatment plant," Renewable Energy, Elsevier, vol. 146(C), pages 1301-1308.
    15. Koçak, Emrah & Şarkgüneşi, Aykut, 2017. "The renewable energy and economic growth nexus in Black Sea and Balkan countries," Energy Policy, Elsevier, vol. 100(C), pages 51-57.
    16. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    17. Sharif, Arshian & Raza, Syed Ali & Ozturk, Ilhan & Afshan, Sahar, 2019. "The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations," Renewable Energy, Elsevier, vol. 133(C), pages 685-691.
    18. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    19. Sohag, Kazi & Taşkın, F. Dilvin & Malik, Muhammad Nasir, 2019. "Green economic growth, cleaner energy and militarization: Evidence from Turkey," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    20. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2854-:d:251298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.