IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v56y2016icp303-318.html
   My bibliography  Save this article

A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow

Author

Listed:
  • Zhang, Yuning
  • Zhang, Yuning
  • Qian, Zhongdong
  • Ji, Bin
  • Wu, Yulin

Abstract

Erosion through synergetic effects between cavitation erosion and particle abrasion in silt-laden flow seriously affects the safe operations of hydroturbines. In this review, recent advances of cavitation inception on particles and microscopic interactions between bubbles and particles are reviewed and discussed. For cavitation inception, influences of several paramount parameters (e.g. types, sizes, shape and surface structure of particles, pressurization and memory effects) have been revealed and discussed. The interaction mechanisms between cavitation bubbles and particles are demonstrated using experimental data obtained with a single particle. Through the microscopic interactions, the particles can be accelerated by the collapsing bubbles up to 40m/s and also be possibly split up by the cavitation, leading to deagglomeration of particle clusters.

Suggested Citation

  • Zhang, Yuning & Zhang, Yuning & Qian, Zhongdong & Ji, Bin & Wu, Yulin, 2016. "A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 303-318.
  • Handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:303-318
    DOI: 10.1016/j.rser.2015.11.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115013192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.11.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Hailun & Yan, Zheng, 2009. "Present situation and future prospect of hydropower in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1652-1656, August.
    2. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    3. Loots, I. & van Dijk, M. & Barta, B. & van Vuuren, S.J. & Bhagwan, J.N., 2015. "A review of low head hydropower technologies and applications in a South African context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1254-1268.
    4. Rahi, O.P. & Chandel, A.K., 2015. "Refurbishment and uprating of hydro power plants—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 726-737.
    5. Mishra, Sachin & Singal, S.K. & Khatod, D.K., 2011. "Optimal installation of small hydropower plant—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3862-3869.
    6. Caralis, G. & Rados, K. & Zervos, A., 2010. "On the market of wind with hydro-pumped storage systems in autonomous Greek islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2221-2226, October.
    7. Padhy, Mamata Kumari & Saini, R.P., 2008. "A review on silt erosion in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1974-1987, September.
    8. William B. McNamara & Yuri T. Didenko & Kenneth S. Suslick, 1999. "Sonoluminescence temperatures during multi-bubble cavitation," Nature, Nature, vol. 401(6755), pages 772-775, October.
    9. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    10. Mishra, Mukesh Kumar & Khare, Nilay & Agrawal, Alka Bani, 2015. "Small hydro power in India: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 101-115.
    11. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    12. Liu, Xin & Luo, Yongyao & Karney, Bryan W. & Wang, Weizheng, 2015. "A selected literature review of efficiency improvements in hydraulic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 18-28.
    13. Zuo, Zhigang & Liu, Shuhong & Sun, Yuekun & Wu, Yulin, 2015. "Pressure fluctuations in the vaneless space of High-head pump-turbines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 965-974.
    14. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suyesh, Bhattarai & Parag, Vichare & Keshav, Dahal & Ahmed, Al Makky & Abdul-Ghani, Olabi, 2019. "Novel trends in modelling techniques of Pelton Turbine bucket for increased renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 87-101.
    2. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    3. Varga, Roxána & Klapcsik, Kálmán & Hegedűs, Ferenc, 2020. "Route to shrimps: Dissipation driven formation of shrimp-shaped domains," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2019. "Improving the cavitation inception performance of a reversible pump-turbine in pump mode by blade profile redesign: Design concept, method and applications," Renewable Energy, Elsevier, vol. 133(C), pages 325-342.
    5. Zhang, Yuning & Liu, Kaihua & Xian, Haizhen & Du, Xiaoze, 2018. "A review of methods for vortex identification in hydroturbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1269-1285.
    6. Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
    7. Adnan Aslam Noon & Man-Hoe Kim, 2021. "Sediment and Cavitation Erosion in Francis Turbines—Review of Latest Experimental and Numerical Techniques," Energies, MDPI, vol. 14(6), pages 1-19, March.
    8. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    9. Gao, Dan & Li, Zheng & Liu, Pei & Zhao, Jiazhu & Zhang, Yuning & Li, Canbing, 2018. "A coordinated energy security model taking strategic petroleum reserve and alternative fuels into consideration," Energy, Elsevier, vol. 145(C), pages 171-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yuning & Tang, Ningning & Niu, Yuguang & Du, Xiaoze, 2016. "Wind energy rejection in China: Current status, reasons and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 322-344.
    2. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    3. Bamisile, Olusola & Huang, Qi & Xu, Xiao & Hu, Weihao & Liu, Wen & Liu, Zhou & Chen, Zhe, 2020. "An approach for sustainable energy planning towards 100 % electrification of Nigeria by 2030," Energy, Elsevier, vol. 197(C).
    4. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    5. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    6. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    7. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2016. "Pumped hydro energy storage in buildings," Applied Energy, Elsevier, vol. 179(C), pages 1242-1250.
    8. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    10. Jonathan Fahlbeck & Håkan Nilsson & Saeed Salehi, 2021. "Flow Characteristics of Preliminary Shutdown and Startup Sequences for a Model Counter-Rotating Pump-Turbine," Energies, MDPI, vol. 14(12), pages 1-17, June.
    11. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    12. Stenzel, Peter & Linssen, Jochen, 2016. "Concept and potential of pumped hydro storage in federal waterways," Applied Energy, Elsevier, vol. 162(C), pages 486-493.
    13. Vinod, J. & Sarkar, Bikash K. & Sanyal, Dipankar, 2022. "Flow control in a small Francis turbine by system identification and fuzzy adaptation of PID and deadband controllers," Renewable Energy, Elsevier, vol. 201(P2), pages 87-99.
    14. Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
    15. Manikas, Konstantinos & Skroufouta, Sofia & Baltas, Evangelos, 2024. "Simulation and evaluation of pumped hydropower storage (PHPS) system at Kastraki reservoir," Renewable Energy, Elsevier, vol. 222(C).
    16. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    17. Seme, Sebastijan & Sredenšek, Klemen & Praunseis, Zdravko & Štumberger, Bojan & Hadžiselimović, Miralem, 2018. "Optimal price of electricity of solar power plants and small hydro power plants – Technical and economical part of investments," Energy, Elsevier, vol. 157(C), pages 87-95.
    18. Fan, Xiaoyu & Guo, Luna & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2023. "Liquid air energy storage system based on fluidized bed heat transfer," Renewable Energy, Elsevier, vol. 215(C).
    19. Martín, Mariano & Grossmann, Ignacio E., 2018. "Optimal integration of renewable based processes for fuels and power production: Spain case study," Applied Energy, Elsevier, vol. 213(C), pages 595-610.
    20. Krajacic, Goran & Duic, Neven & Tsikalakis, Antonis & Zoulias, Manos & Caralis, George & Panteri, Eirini & Carvalho, Maria da Graça, 2011. "Feed-in tariffs for promotion of energy storage technologies," Energy Policy, Elsevier, vol. 39(3), pages 1410-1425, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:303-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.