IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v130y2020ics0960077919303650.html
   My bibliography  Save this article

Route to shrimps: Dissipation driven formation of shrimp-shaped domains

Author

Listed:
  • Varga, Roxána
  • Klapcsik, Kálmán
  • Hegedűs, Ferenc

Abstract

In this paper, two scenarios for the formation of shrimp-shaped domains [1] are presented. The employed test model is the Keller–Miksis equation that is a second order, harmonically forced nonlinear oscillator describing the dynamics of a single spherical gas bubble placed in a liquid domain. The results have shown that with an increasing dissipation rate (liquid viscosity), shrimp-shaped domains are evolved within the complex structure of each subharmonic resonances in the amplitude-frequency parameter plane of the external forcing. The mechanism is the coalescence and interaction of two pairs of a period-doubling and a saddle-node codimension-two bifurcation curves.

Suggested Citation

  • Varga, Roxána & Klapcsik, Kálmán & Hegedűs, Ferenc, 2020. "Route to shrimps: Dissipation driven formation of shrimp-shaped domains," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303650
    DOI: 10.1016/j.chaos.2019.109424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varga, Roxána & Paál, György, 2015. "Numerical investigation of the strength of collapse of a harmonically excited bubble," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 56-71.
    2. Zhang, Yuning & Zhang, Yuning & Qian, Zhongdong & Ji, Bin & Wu, Yulin, 2016. "A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 303-318.
    3. Medeiros, E.S. & de Souza, S.L.T. & Medrano-T, R.O. & Caldas, I.L., 2011. "Replicate periodic windows in the parameter space of driven oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 982-989.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Costa, Diogo Ricardo & Rocha, Julia G.S. & de Paiva, Luam S. & Medrano-T, Rene O., 2021. "Logistic-like and Gauss coupled maps: The born of period-adding cascades," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klapcsik, Kálmán & Hegedűs, Ferenc, 2017. "The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 198-208.
    2. Zhang, Lingling & Chen, Weizhong & Shen, Yang & Wu, Yaorong & Zhao, Guoying, 2021. "The nonlinear characteristics of the pulsations, translations and the secondary Bjerknes force," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    5. Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2019. "Improving the cavitation inception performance of a reversible pump-turbine in pump mode by blade profile redesign: Design concept, method and applications," Renewable Energy, Elsevier, vol. 133(C), pages 325-342.
    6. Zhang, Yuning & Liu, Kaihua & Xian, Haizhen & Du, Xiaoze, 2018. "A review of methods for vortex identification in hydroturbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1269-1285.
    7. Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
    8. Suyesh, Bhattarai & Parag, Vichare & Keshav, Dahal & Ahmed, Al Makky & Abdul-Ghani, Olabi, 2019. "Novel trends in modelling techniques of Pelton Turbine bucket for increased renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 87-101.
    9. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    10. Gao, Dan & Li, Zheng & Liu, Pei & Zhao, Jiazhu & Zhang, Yuning & Li, Canbing, 2018. "A coordinated energy security model taking strategic petroleum reserve and alternative fuels into consideration," Energy, Elsevier, vol. 145(C), pages 171-181.
    11. da Costa, Diogo Ricardo & Hansen, Matheus & Batista, Antonio Marcos, 2019. "Parametric perturbation in a model that describes the neuronal membrane potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 519-525.
    12. Adnan Aslam Noon & Man-Hoe Kim, 2021. "Sediment and Cavitation Erosion in Francis Turbines—Review of Latest Experimental and Numerical Techniques," Energies, MDPI, vol. 14(6), pages 1-19, March.
    13. da Costa, Diogo Ricardo & Rocha, Julia G.S. & de Paiva, Luam S. & Medrano-T, Rene O., 2021. "Logistic-like and Gauss coupled maps: The born of period-adding cascades," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. de Souza, Silvio L.T. & Batista, Antonio M. & Caldas, Iberê L. & Iarosz, Kelly C. & Szezech Jr, José D., 2021. "Dynamics of epidemics: Impact of easing restrictions and control of infection spread," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.