IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125003004.html
   My bibliography  Save this article

Thermal models for mono/bifacial modules in ground/floating photovoltaic systems: A review

Author

Listed:
  • Osama, Amr
  • Tina, Giuseppe Marco
  • Gagliano, Antonio

Abstract

Since the world's policy tends to rely on solar energy to meet energy needs, photovoltaics are considered a crucial asset that requires continuous monitoring. Several installation solutions, including different PV technologies, created challenges in providing a reliable evaluation to depend on. Thermal modeling is essential to predict the cell temperature that is utilized in anticipating the system's electrical performance, as in most commercial software. Hence, this work provides an overview of the most used thermal models for installation solutions (free-standing, roof-mounted, floating, etc.) utilizing both mono and bifacial module technology. The provided analysis is focused on evaluating the different responses of the thermal models that can be used for the same configuration and technology. A sensitive comparative analysis of the various thermal models is provided to assess their response to the climatic parameters as an input to the thermal model. The analysis revealed that for monofacial thermal models, Ross models underestimate the cell temperature at any radiation intensity, while the Faiman model using PVsyst coefficients generates the highest overestimated cell temperature among the examined models. It can be seen that the effect of wind speed reduces for a velocity higher than 10 m/s. As for the bifacial PV module, it can be noticed that the Sandia model using Bifacial optimized coefficients is very sensitive to the back surface radiation as it tends to overestimate relative to the Faiman model. Furthermore, floating PV thermal models are significantly affected by the heat transfer coefficient that usually produces a lower cell temperature.

Suggested Citation

  • Osama, Amr & Tina, Giuseppe Marco & Gagliano, Antonio, 2025. "Thermal models for mono/bifacial modules in ground/floating photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003004
    DOI: 10.1016/j.rser.2025.115627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125003004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.