Author
Listed:
- Tina, Giuseppe Marco
- Osama, Amr
- Mannino, Gaetano
- Gagliano, Antonio
- Cucuzza, Alessio Vincenzo
- Bizzarri, Fabrizio
Abstract
The overall performance of PV modules is significantly affected by the design configuration, especially the bifacial module technology over the conventional monofacial ones. In land-based PV installation, the configuration of the PV array is usually subject to the area available. However, for the floating PV system (FPV), the area doesn't constrain the installation design. The presence of a water surface has a key impact on the operating status of the FPV module; nevertheless, installing the module in different configurations as landscape or portrait, can effectively influence the thermal behaviour of the module and thus the overall performance. Hence, this paper aims to analyse experimentally the performance of the FPV system installed in landscape configuration (L-FPV) and portrait configuration (P-FPV). Additionally, for a deeper evaluation, both bifacial and monofacial modules are investigated under the different mentioned configurations. The experimental setup consists of two sets of orientations, each having a typical rated power of different module technologies (monofacial/bifacial) available in “Enel Innovation Lab” in Catania (Italy). Measurements of seven months have been investigated for performance evaluation. The outcomes of this research revealed that for the same module technology, landscape configuration has a lower temperature compared to portrait configuration by around 1°C for the bifacial modules and 1.71°C for the monofacial modules. This led to a favorable daily array yield improvement by 3 % for the bifacial technology and 2.8 % for the monofacial one. Furthermore, thermal modeling is performed through coefficients optimization of thermal models for different module technologies and layouts for floating systems.
Suggested Citation
Tina, Giuseppe Marco & Osama, Amr & Mannino, Gaetano & Gagliano, Antonio & Cucuzza, Alessio Vincenzo & Bizzarri, Fabrizio, 2025.
"Thermal comparison of floating bifacial and monofacial photovoltaic modules considering two laying configurations,"
Applied Energy, Elsevier, vol. 389(C).
Handle:
RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004623
DOI: 10.1016/j.apenergy.2025.125732
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004623. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.