IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v386y2025ics0306261925002867.html
   My bibliography  Save this article

Exploring climate-driven performance of floating photovoltaic systems: Energy production enhancement and evaporation reduction

Author

Listed:
  • Cáceres González, Rodrigo
  • Sarmiento-Laurel, Cristóbal
  • Alcayaga, Hernán
  • Díaz, Andrés J.
  • Pizarro, Alonso
  • Crespo Fuentes, Juan
  • Moya Caro, Alicia
  • Vásquez Páez, Camila
  • Bustos Olavarría, Fabián
  • Boscolo, Roberta
  • Bastani, Hamid

Abstract

This study evaluates four floating photovoltaic (FPV) system configurations across 4,244 water bodies in diverse climates: semi-arid, desert, Marine West Coast, Mediterranean, and tundra, considering variations such as dry summers or winters, coastal influence, and mountain influence. The Penman–Monteith model is chosen to predict evaporation due to its low Mean Absolute Error (MAE) and Mean Square Error (MSE). Results indicate that the greatest water savings occur in cold desert climates with dry winters (BWk(w)), achieving reductions of up to 2066.15 mm per year. Significant water-energy synergies are observed in Type-A and Type-D configurations, where the support system fully covers the water under the FPV, leading to improvements in energy production, with a median reaching up to 8187.65 Wh/m2/year and a median evaporation saving of 1085.24 mm/year for the Type-A configuration in the BSk(w) climate. Tundra climates (ET) generally show less evaporation, but dry winters (ET(w)) and summers (ET(s)) enhance performance. ET(w) achieves a median energy production increase of 6430.7 Wh/m2/year and a median evaporation saving of 1165.20 mm/year, while ET(s) follows closely with 5997.42 Wh/m2/year and 794.06 mm/year in savings. The module temperature reduction (ΔT) is crucial for FPV performance. Higher ΔT, such as 7.60 °C in BSk(w), boosts energy production and evaporation savings, increasing panel efficiency by up to 1.45%. Conversely, lower ΔT climates, like Cfc at 4.26°C, exhibit reduced efficiency. This paper provides a comprehensive characterization of FPV system performance across a wide range of climates, demonstrating their potential to enhance energy production and reduce water loss.

Suggested Citation

  • Cáceres González, Rodrigo & Sarmiento-Laurel, Cristóbal & Alcayaga, Hernán & Díaz, Andrés J. & Pizarro, Alonso & Crespo Fuentes, Juan & Moya Caro, Alicia & Vásquez Páez, Camila & Bustos Olavarría, Fab, 2025. "Exploring climate-driven performance of floating photovoltaic systems: Energy production enhancement and evaporation reduction," Applied Energy, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002867
    DOI: 10.1016/j.apenergy.2025.125556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tina, Giuseppe Marco & Bontempo Scavo, Fausto & Merlo, Leonardo & Bizzarri, Fabrizio, 2021. "Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants," Applied Energy, Elsevier, vol. 281(C).
    2. Tomasz Kolerski & Parisa Radan & Dariusz Gąsiorowski, 2021. "Ice Load Characteristics on Floating Photovoltaic Platform," Energies, MDPI, vol. 14(9), pages 1-20, April.
    3. Yubin Jin & Shijie Hu & Alan D. Ziegler & Luke Gibson & J. Elliott Campbell & Rongrong Xu & Deliang Chen & Kai Zhu & Yan Zheng & Bin Ye & Fan Ye & Zhenzhong Zeng, 2023. "Energy production and water savings from floating solar photovoltaics on global reservoirs," Nature Sustainability, Nature, vol. 6(7), pages 865-874, July.
    4. Dai, Jian & Zhang, Chi & Lim, Han Vincent & Ang, Kok Keng & Qian, Xudong & Wong, Johnny Liang Heng & Tan, Sze Tiong & Wang, Chien Looi, 2020. "Design and construction of floating modular photovoltaic system for water reservoirs," Energy, Elsevier, vol. 191(C).
    5. Rohwer, Carl, 1931. "Evaporation from Free Water Surfaces," Technical Bulletins 163103, United States Department of Agriculture, Economic Research Service.
    6. Waithiru Charles Lawrence Kamuyu & Jong Rok Lim & Chang Sub Won & Hyung Keun Ahn, 2018. "Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs," Energies, MDPI, vol. 11(2), pages 1-13, February.
    7. Elminshawy, Nabil A.S. & El-Damhogi, D.G. & Ibrahim, I.A. & Elminshawy, Ahmed & Osama, Amr, 2022. "Assessment of floating photovoltaic productivity with fins-assisted passive cooling," Applied Energy, Elsevier, vol. 325(C).
    8. Fernando Roberto dos Santos & Giovana Katie Wiecheteck & Jorim Sousa das Virgens Filho & Gabriel Alfredo Carranza & Terrence Lynn Chambers & Afef Fekih, 2022. "Effects of a Floating Photovoltaic System on the Water Evaporation Rate in the Passaúna Reservoir, Brazil," Energies, MDPI, vol. 15(17), pages 1-16, August.
    9. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    10. Pablo Sarricolea & Mariajosé Herrera-Ossandon & Óliver Meseguer-Ruiz, 2017. "Climatic regionalisation of continental Chile," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 66-73, November.
    11. Muñoz-Cerón, Emilio & Osorio-Aravena, Juan Carlos & Rodríguez-Segura, Francisco Javier & Frolova, Marina & Ruano-Quesada, Antonio, 2023. "Floating photovoltaics systems on water irrigation ponds: Technical potential and multi-benefits analysis," Energy, Elsevier, vol. 271(C).
    12. Arnas Majumder & Roberto Innamorati & Andrea Frattolillo & Amit Kumar & Gianluca Gatto, 2021. "Performance Analysis of a Floating Photovoltaic System and Estimation of the Evaporation Losses Reduction," Energies, MDPI, vol. 14(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yujia & Khojasteh, Danial & Windt, Christian & Huang, Luofeng, 2025. "An interdisciplinary literature review of floating solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    2. Arnas Majumder & Amit Kumar & Roberto Innamorati & Costantino Carlo Mastino & Giancarlo Cappellini & Roberto Baccoli & Gianluca Gatto, 2023. "Cooling Methods for Standard and Floating PV Panels," Energies, MDPI, vol. 16(24), pages 1-28, December.
    3. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    4. Rahaman, Md Atiqur & Chambers, Terrence L. & Fekih, Afef & Wiecheteck, Giovana & Carranza, Gabriel & Possetti, Gustavo Rafael Collere, 2023. "Floating photovoltaic module temperature estimation: Modeling and comparison," Renewable Energy, Elsevier, vol. 208(C), pages 162-180.
    5. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Gao, Yuanqiang & Lei, Liuwei & Zhang, Meng & Zhao, Ziwen & Li, Jianling & Mahmud, Md Apel & Liu, Zhengguang & Li, Ming & Deng, Boren & Chen, Diyi, 2024. "Boosting floating photovoltaics via cooling methods and reservoir characteristics: Crafting optimal symbiosis with off-river pumped hydro storage," Energy, Elsevier, vol. 312(C).
    7. Tina, Giuseppe Marco & Osama, Amr & Mannino, Gaetano & Gagliano, Antonio & Cucuzza, Alessio Vincenzo & Bizzarri, Fabrizio, 2025. "Thermal comparison of floating bifacial and monofacial photovoltaic modules considering two laying configurations," Applied Energy, Elsevier, vol. 389(C).
    8. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Kulat, Muhammed Imran & Tosun, Kursad & Karaveli, Abdullah Bugrahan & Yucel, Ismail & Akinoglu, Bulent Gultekin, 2023. "A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey," Renewable Energy, Elsevier, vol. 206(C), pages 694-709.
    10. Bamoshmoosh, Abdullah & Catania, Matteo & Dipierro, Vincenzo & Ficili, Marco & Fusco, Andrea & Gioffrè, Domenico & Parolin, Federico & Pilotti, Lorenzo & Zelaschi, Andrea & Vincenti, Ferdinando, 2025. "Techno-economic optimization of pumped hydro storage plants integrated with floating photovoltaic," Applied Energy, Elsevier, vol. 382(C).
    11. Socrates Kaplanis & Eleni Kaplani & John K. Kaldellis, 2023. "PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions," Energies, MDPI, vol. 16(12), pages 1-19, June.
    12. Makhija, Amandeep Singh & Tiwari, Vivek & Bohra, Shabbir S., 2025. "Evaluating performance-impacting parameters for water-mounted solar PV systems using response surface methodology," Renewable Energy, Elsevier, vol. 244(C).
    13. López, Mario & Claus, Rubén & Soto, Fernando & Hernández-Garrastacho, Zenaida A. & Cebada-Relea, Alejandro & Simancas, Orlando, 2024. "Advancing offshore solar energy generation: The HelioSea concept," Applied Energy, Elsevier, vol. 359(C).
    14. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    15. Bi, Cheng & Law, Adrian Wing-Keung, 2023. "Co-locating offshore wind and floating solar farms – Effect of high wind and wave conditions on solar power performance," Energy, Elsevier, vol. 266(C).
    16. Zeng, Fanxu & Bi, Cheng & Sree, Dharma & Huang, Guoxing & Zhang, Ningchuan & Law, Adrian Wing-Keung, 2023. "An Adaptive Barrier-Mooring System for Coastal Floating Solar Farms," Applied Energy, Elsevier, vol. 348(C).
    17. Rehman, Tauseef-ur & Qaisrani, Mumtaz A. & Shafiq, M. Basit & Baba, Yousra Filali & Aslfattahi, Navid & Shahsavar, Amin & Cheema, Taqi Ahmad & Park, Cheol Woo, 2025. "Global perspectives on advancing photovoltaic system performance—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    18. Ramanan, C.J. & Lim, King Hann & Kurnia, Jundika Candra, 2025. "Thermal behavior of floating photovoltaics: A comparison of performance at varying heights and benchmarking against land-based photovoltaics," Applied Energy, Elsevier, vol. 388(C).
    19. Tomasz Kolerski & Parisa Radan & Dariusz Gąsiorowski, 2021. "Ice Load Characteristics on Floating Photovoltaic Platform," Energies, MDPI, vol. 14(9), pages 1-20, April.
    20. Koami Soulemane Hayibo & Pierce Mayville & Ravneet Kaur Kailey & Joshua M. Pearce, 2020. "Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics," Energies, MDPI, vol. 13(23), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925002867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.