IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923009820.html
   My bibliography  Save this article

An Adaptive Barrier-Mooring System for Coastal Floating Solar Farms

Author

Listed:
  • Zeng, Fanxu
  • Bi, Cheng
  • Sree, Dharma
  • Huang, Guoxing
  • Zhang, Ningchuan
  • Law, Adrian Wing-Keung

Abstract

Floating solar farms in the coastal areas are subjected to more complex environmental loads of tides and waves than lakes or reservoirs with greater challenges to their mooring. At present, mooring systems based on elastic cables are prevalent for coastal floating solar farms, but these cables tend to be expensive and require periodic retuning with higher maintenance costs. In this study, we propose a new alternative of an adaptive barrier-mooring system which is consisted of perimeter pontoons, barriers, clump weights, mooring lines and anchors as a new alternative. The performance of the adaptive barrier-mooring system installed on the leading edge of a coastal floating solar farm is first examined through static analysis. The results showed that the new mooring system enables the floating solar farm to adapt up to 36% of water depth without introducing slack in the mooring cables. In addition, the resulting nonlinear mooring stiffness and lower pulling-out forces on the anchors are also both beneficial to the system design. Subsequently, a floating solar farm model with four different mooring systems, including adaptive barrier-mooring systems as well as elastic mooring cables, were tested for dynamic performance in a wave flume in the laboratory with Froude similarity under both incident waves as well as water level changes. The experimental results demonstrated the good performance of the adaptive barrier-mooring system in terms of higher platform stability over a large tidal range. Finally, the construction and maintenance costs of the adaptive barrier-mooring system should be lower compared to elastic mooring systems due to the use of common materials without the need for periodic tightening. We hope that the adaptive barrier-mooring system can further aid the development of coastal floating solar farms in the future.

Suggested Citation

  • Zeng, Fanxu & Bi, Cheng & Sree, Dharma & Huang, Guoxing & Zhang, Ningchuan & Law, Adrian Wing-Keung, 2023. "An Adaptive Barrier-Mooring System for Coastal Floating Solar Farms," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009820
    DOI: 10.1016/j.apenergy.2023.121618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    2. Thi Thu Em Vo & Hyeyoung Ko & Junho Huh & Namje Park, 2021. "Overview of Possibilities of Solar Floating Photovoltaic Systems in the OffShore Industry," Energies, MDPI, vol. 14(21), pages 1-30, October.
    3. Maria Ikhennicheu & Arthur Blanc & Benoat Danglade & Jean-Christophe Gilloteaux, 2022. "OrcaFlex Modelling of a Multi-Body Floating Solar Island Subjected to Waves," Energies, MDPI, vol. 15(23), pages 1-17, December.
    4. Dai, Jian & Zhang, Chi & Lim, Han Vincent & Ang, Kok Keng & Qian, Xudong & Wong, Johnny Liang Heng & Tan, Sze Tiong & Wang, Chien Looi, 2020. "Design and construction of floating modular photovoltaic system for water reservoirs," Energy, Elsevier, vol. 191(C).
    5. Sahu, Alok & Yadav, Neha & Sudhakar, K., 2016. "Floating photovoltaic power plant: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 815-824.
    6. He, Fang & Huang, Zhenhua & Law, Adrian Wing-Keung, 2013. "An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction," Applied Energy, Elsevier, vol. 106(C), pages 222-231.
    7. Elminshawy, Nabil A.S. & El-Damhogi, D.G. & Ibrahim, I.A. & Elminshawy, Ahmed & Osama, Amr, 2022. "Assessment of floating photovoltaic productivity with fins-assisted passive cooling," Applied Energy, Elsevier, vol. 325(C).
    8. Resch, Gustav & Held, Anne & Faber, Thomas & Panzer, Christian & Toro, Felipe & Haas, Reinhard, 2008. "Potentials and prospects for renewable energies at global scale," Energy Policy, Elsevier, vol. 36(11), pages 4048-4056, November.
    9. Ferrer-Gisbert, Carlos & Ferrán-Gozálvez, José J. & Redón-Santafé, Miguel & Ferrer-Gisbert, Pablo & Sánchez-Romero, Francisco J. & Torregrosa-Soler, Juan Bautista, 2013. "A new photovoltaic floating cover system for water reservoirs," Renewable Energy, Elsevier, vol. 60(C), pages 63-70.
    10. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi, Cheng & Law, Adrian Wing-Keung, 2023. "Co-locating offshore wind and floating solar farms – Effect of high wind and wave conditions on solar power performance," Energy, Elsevier, vol. 266(C).
    2. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    3. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    5. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    6. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    7. Vladan Durković & Željko Đurišić, 2017. "Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro," Energies, MDPI, vol. 10(10), pages 1-23, September.
    8. Dai, Jian & Zhang, Chi & Lim, Han Vincent & Ang, Kok Keng & Qian, Xudong & Wong, Johnny Liang Heng & Tan, Sze Tiong & Wang, Chien Looi, 2020. "Design and construction of floating modular photovoltaic system for water reservoirs," Energy, Elsevier, vol. 191(C).
    9. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    10. Thi Thu Em Vo & Hyeyoung Ko & Junho Huh & Namje Park, 2021. "Overview of Possibilities of Solar Floating Photovoltaic Systems in the OffShore Industry," Energies, MDPI, vol. 14(21), pages 1-30, October.
    11. Fereshtehpour, Mohammad & Javidi Sabbaghian, Reza & Farrokhi, Ali & Jovein, Ehsan Bahrami & Ebrahimi Sarindizaj, Elham, 2021. "Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures," Renewable Energy, Elsevier, vol. 171(C), pages 1171-1187.
    12. Kulat, Muhammed Imran & Tosun, Kursad & Karaveli, Abdullah Bugrahan & Yucel, Ismail & Akinoglu, Bulent Gultekin, 2023. "A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey," Renewable Energy, Elsevier, vol. 206(C), pages 694-709.
    13. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Sika Gadzanku & Heather Mirletz & Nathan Lee & Jennifer Daw & Adam Warren, 2021. "Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    15. Md. Imamul Islam & Mohd Shawal Jadin & Ahmed Al Mansur & Nor Azwan Mohamed Kamari & Taskin Jamal & Molla Shahadat Hossain Lipu & Mohd Nurulakla Mohd Azlan & Mahidur R. Sarker & A. S. M. Shihavuddin, 2023. "Techno-Economic and Carbon Emission Assessment of a Large-Scale Floating Solar PV System for Sustainable Energy Generation in Support of Malaysia’s Renewable Energy Roadmap," Energies, MDPI, vol. 16(10), pages 1-32, May.
    16. Ali, Babkir & Hedayati-Dezfooli, M. & Gamil, Ahmed, 2023. "Sustainability assessment of alternative energy power generation pathways through the development of impact indicators for water, land, GHG emissions, and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    17. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    18. Vidović, V. & Krajačić, G. & Matak, N. & Stunjek, G. & Mimica, M., 2023. "Review of the potentials for implementation of floating solar panels on lakes and water reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    19. Tercan, Emre & Dereli, Mehmet Ali & Saracoglu, Burak Omer, 2022. "Location alternatives generation and elimination of floatovoltaics with virtual power plant designs," Renewable Energy, Elsevier, vol. 193(C), pages 1150-1163.
    20. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.