IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9260-d995552.html
   My bibliography  Save this article

OrcaFlex Modelling of a Multi-Body Floating Solar Island Subjected to Waves

Author

Listed:
  • Maria Ikhennicheu

    (INNOSEA, Bâtiment Insula, 11 Rue Arthur III, 44200 Nantes, France)

  • Arthur Blanc

    (INNOSEA, Bâtiment Insula, 11 Rue Arthur III, 44200 Nantes, France)

  • Benoat Danglade

    (INNOSEA, Bâtiment Insula, 11 Rue Arthur III, 44200 Nantes, France)

  • Jean-Christophe Gilloteaux

    (INNOSEA, Bâtiment Insula, 11 Rue Arthur III, 44200 Nantes, France)

Abstract

Floating solar energy is an industry with great potential. As the industry matures, floating solar farms are considered in more challenging environments, where the presence of waves must be accounted for in mismatch studies and fatigue and mechanical considerations regarding electrical cables and mooring lines. Computational modelling of floating solar islands is now a critical step. The representation of such islands on industry-validated software is very complex, as it includes a large number of elements, each interacting with its neighbours. This study focuses on conditions with small waves (amplitude of <1 m) that are relevant to sheltered areas where generic float technologies can be utilized. A multi-body island composed of 3 × 3 floats is modelled in OrcaFlex. A solution to model the kinematic constraint chain between floats is presented. Three different modelling solutions are compared in terms of results and computation time. The most accurate model includes a multi-body computation of float responses in a potential flow solver (OrcaWave). However, solving the equations for a single float and applying the results to each float individually also gives accurate results and reduces the computation time by a factor of 3. These results represent a basis for further works in which larger and more realistic floating islands can be modelled.

Suggested Citation

  • Maria Ikhennicheu & Arthur Blanc & Benoat Danglade & Jean-Christophe Gilloteaux, 2022. "OrcaFlex Modelling of a Multi-Body Floating Solar Island Subjected to Waves," Energies, MDPI, vol. 15(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9260-:d:995552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sethuraman, Latha & Venugopal, Vengatesan, 2013. "Hydrodynamic response of a stepped-spar floating wind turbine: Numerical modelling and tank testing," Renewable Energy, Elsevier, vol. 52(C), pages 160-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Fanxu & Bi, Cheng & Sree, Dharma & Huang, Guoxing & Zhang, Ningchuan & Law, Adrian Wing-Keung, 2023. "An Adaptive Barrier-Mooring System for Coastal Floating Solar Farms," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    2. Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
    3. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    4. Niccolo Bruschi & Giulio Ferri & Enzo Marino & Claudio Borri, 2020. "Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine," Energies, MDPI, vol. 13(23), pages 1-14, December.
    5. Ishihara, Takeshi & Zhang, Shining, 2019. "Prediction of dynamic response of semi-submersible floating offshore wind turbine using augmented Morison's equation with frequency dependent hydrodynamic coefficients," Renewable Energy, Elsevier, vol. 131(C), pages 1186-1207.
    6. Zeng, Fanxu & Zhang, Ningchuan & Huang, Guoxing & Gu, Qian & He, Meng, 2023. "Dynamic response of floating offshore wind turbines under freak waves with large crest and deep trough," Energy, Elsevier, vol. 278(C).
    7. Li, Yan & Zhu, Qiang & Liu, Liqin & Tang, Yougang, 2018. "Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines," Renewable Energy, Elsevier, vol. 122(C), pages 576-588.
    8. Meng, Haoran & Su, Hao & Guo, Jia & Qu, Timing & Lei, Liping, 2022. "Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions," Renewable Energy, Elsevier, vol. 181(C), pages 1325-1337.
    9. Tomasicchio, Giuseppe Roberto & D'Alessandro, Felice & Avossa, Alberto Maria & Riefolo, Luigia & Musci, Elena & Ricciardelli, Francesco & Vicinanza, Diego, 2018. "Experimental modelling of the dynamic behaviour of a spar buoy wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 412-432.
    10. Carlo Ruzzo & Giuseppe Failla & Maurizio Collu & Vincenzo Nava & Vincenzo Fiamma & Felice Arena, 2016. "Operational Modal Analysis of a Spar-Type Floating Platform Using Frequency Domain Decomposition Method," Energies, MDPI, vol. 9(11), pages 1-15, October.
    11. Sethuraman, Latha & Venugopal, Vengatesan & Zavvos, Aristeidis & Mueller, Markus, 2014. "Structural integrity of a direct-drive generator for a floating wind turbine," Renewable Energy, Elsevier, vol. 63(C), pages 597-616.
    12. Cian J. Desmond & Jan-Christoph Hinrichs & Jimmy Murphy, 2019. "Uncertainty in the Physical Testing of Floating Wind Energy Platforms’ Accuracy versus Precision," Energies, MDPI, vol. 12(3), pages 1-14, January.
    13. Lerch, Markus & De-Prada-Gil, Mikel & Molins, Climent, 2019. "The influence of different wind and wave conditions on the energy yield and downtime of a Spar-buoy floating wind turbine," Renewable Energy, Elsevier, vol. 136(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9260-:d:995552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.