IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp678-694.html
   My bibliography  Save this article

Coupled modeling and structural vibration control for floating offshore wind turbine

Author

Listed:
  • Yang, J.J.
  • He, E.M.

Abstract

The tremendous wind-wave excitations bring about structural vibrations, which would have adverse influences on the power generation efficiency of the spar floating offshore wind turbine (FOWT). Therefore, two tuned mass dampers (TMDs) are installed in the platform and nacelle of the spar FOWT to control the vibration responses of the structure. The aero-hydro-servo-structure-TMDs coupling kinetics model of 16-degree-of-freedom (DOF) is firstly established for the spar FOWT. The correctness of the coupled model is then verified through comparing with OC3 project of FAST developed by the National Renewable Energy Laboratory (NREL). Subsequently, the TMDs stiffness and damping coefficients are optimized in constraints of the TMDs mass and stroke. Furthermore, the vibration reduction effects of TMDs are studied in the free decay state and wind-wave load cases, respectively. The simulation results demonstrate that the platform TMD can effectively reduce the platform pitch (PFPI) movement and low frequency vibration of the tower top fore-aft (TTFA) deflection, while the nacelle TMD is effective for the high frequency vibration of the TTFA deflection. Thus, the TMDs can control the structural vibration responses of spar FOWTs.

Suggested Citation

  • Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:678-694
    DOI: 10.1016/j.renene.2020.05.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongsheng Zhao & Jianmin Yang & Yanping He, 2012. "Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine," Energies, MDPI, vol. 5(10), pages 1-18, October.
    2. Chen, Z.J. & Stol, K.A. & Mace, B.R., 2017. "Wind turbine blade optimisation with individual pitch and trailing edge flap control," Renewable Energy, Elsevier, vol. 103(C), pages 750-765.
    3. Rahman, Mahmudur & Ong, Zhi Chao & Chong, Wen Tong & Julai, Sabariah & Khoo, Shin Yee, 2015. "Performance enhancement of wind turbine systems with vibration control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 43-54.
    4. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    5. Yulin Si & Hamid Reza Karimi & Huijun Gao, 2013. "Modeling and Parameter Analysis of the OC3-Hywind Floating Wind Turbine with a Tuned Mass Damper in Nacelle," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-10, December.
    6. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    7. Abdalrahman, Gebreel & Melek, William & Lien, Fue-Sang, 2017. "Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)," Renewable Energy, Elsevier, vol. 114(PB), pages 1353-1362.
    8. Lopez-Pavon, Carlos & Souto-Iglesias, Antonio, 2015. "Hydrodynamic coefficients and pressure loads on heave plates for semi-submersible floating offshore wind turbines: A comparative analysis using large scale models," Renewable Energy, Elsevier, vol. 81(C), pages 864-881.
    9. Kaldellis, J.K. & Kapsali, M. & Katsanou, Ev., 2012. "Renewable energy applications in Greece—What is the public attitude?," Energy Policy, Elsevier, vol. 42(C), pages 37-48.
    10. Farrugia, R. & Sant, T. & Micallef, D., 2016. "A study on the aerodynamics of a floating wind turbine rotor," Renewable Energy, Elsevier, vol. 86(C), pages 770-784.
    11. Sethuraman, Latha & Venugopal, Vengatesan, 2013. "Hydrodynamic response of a stepped-spar floating wind turbine: Numerical modelling and tank testing," Renewable Energy, Elsevier, vol. 52(C), pages 160-174.
    12. Kaldellis, J.K. & Kapsali, M., 2013. "Shifting towards offshore wind energy—Recent activity and future development," Energy Policy, Elsevier, vol. 53(C), pages 136-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    2. Baolong Liu & Jianxing Yu, 2022. "Dynamic Response of SPAR-Type Floating Offshore Wind Turbine under Wave Group Scenarios," Energies, MDPI, vol. 15(13), pages 1-18, July.
    3. Yisheng Yao & Dezhi Ning & Sijia Deng & Robert Mayon & Ming Qin, 2023. "Hydrodynamic Investigation on Floating Offshore Wind Turbine Platform Integrated with Porous Shell," Energies, MDPI, vol. 16(11), pages 1-20, May.
    4. Wang, Yize & Liu, Zhenqing & Ma, Xueyun, 2023. "Improvement of tuned rolling cylinder damper for wind turbine tower vibration control considering real wind distribution," Renewable Energy, Elsevier, vol. 216(C).
    5. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    6. Daniel Villoslada & Matilde Santos & María Tomás-Rodríguez, 2021. "General Methodology for the Identification of Reduced Dynamic Models of Barge-Type Floating Wind Turbines," Energies, MDPI, vol. 14(13), pages 1-16, June.
    7. Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
    8. Hongfu Zhang & Jiahao Wen & Farshad Golnary & Lei Zhou, 2022. "Output Power Control and Load Mitigation of a Horizontal Axis Wind Turbine with a Fully Coupled Aeroelastic Model: Novel Sliding Mode Perspective," Mathematics, MDPI, vol. 10(15), pages 1-40, August.
    9. Zhang, Tianyi & Wang, Wenhua & Li, Xin & Wang, Bin, 2023. "Vibration mitigation in offshore wind turbine under combined wind-wave-earthquake loads using the tuned mass damper inerter," Renewable Energy, Elsevier, vol. 216(C).
    10. Li, Lin & Tan, Dapeng & Yin, Zichao & Wang, Tong & Fan, Xinghua & Wang, Ronghui, 2021. "Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production," Renewable Energy, Elsevier, vol. 175(C), pages 887-909.
    11. Antonio Galán-Lavado & Matilde Santos, 2021. "Analysis of the Effects of the Location of Passive Control Devices on the Platform of a Floating Wind Turbine," Energies, MDPI, vol. 14(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdy, Mostafa & Bahaj, AbuBakr S., 2018. "Multi criteria decision analysis for offshore wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 118(C), pages 278-289.
    2. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Tosatto, Andrea & Beseler, Xavier Martínez & Østergaard, Jacob & Pinson, Pierre & Chatzivasileiadis, Spyros, 2022. "North Sea Energy Islands: Impact on national markets and grids," Energy Policy, Elsevier, vol. 167(C).
    4. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    5. Vianna Neto, Júlio Xavier & Guerra Junior, Elci José & Moreno, Sinvaldo Rodrigues & Hultmann Ayala, Helon Vicente & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2018. "Wind turbine blade geometry design based on multi-objective optimization using metaheuristics," Energy, Elsevier, vol. 162(C), pages 645-658.
    6. Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.
    7. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    8. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    9. Kaldellis, J.K. & Kapsali, M., 2013. "Shifting towards offshore wind energy—Recent activity and future development," Energy Policy, Elsevier, vol. 53(C), pages 136-148.
    10. Zuo, Haoran & Bi, Kaiming & Hao, Hong, 2020. "A state-of-the-art review on the vibration mitigation of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    12. Minhui Tong & Weidong Zhu & Xiang Zhao & Meilin Yu & Kan Liu & Gang Li, 2020. "Free and Forced Vibration Analysis of H-type and Hybrid Vertical-Axis Wind Turbines," Energies, MDPI, vol. 13(24), pages 1-32, December.
    13. Brzezińska-Rawa, Anna & Goździewicz-Biechońska, Justyna, 2014. "Recent developments in the wind energy sector in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 79-87.
    14. Kaldellis, J.K. & Apostolou, D. & Kapsali, M. & Kondili, E., 2016. "Environmental and social footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 92(C), pages 543-556.
    15. Ishihara, Takeshi & Zhang, Shining, 2019. "Prediction of dynamic response of semi-submersible floating offshore wind turbine using augmented Morison's equation with frequency dependent hydrodynamic coefficients," Renewable Energy, Elsevier, vol. 131(C), pages 1186-1207.
    16. Bhardwaj, U. & Teixeira, A.P. & Soares, C. Guedes, 2019. "Reliability prediction of an offshore wind turbine gearbox," Renewable Energy, Elsevier, vol. 141(C), pages 693-706.
    17. Fares M’zoughi & Payam Aboutalebi & Izaskun Garrido & Aitor J. Garrido & Manuel De La Sen, 2021. "Complementary Airflow Control of Oscillating Water Columns for Floating Offshore Wind Turbine Stabilization," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
    18. Daniel Villoslada & Matilde Santos & María Tomás-Rodríguez, 2021. "General Methodology for the Identification of Reduced Dynamic Models of Barge-Type Floating Wind Turbines," Energies, MDPI, vol. 14(13), pages 1-16, June.
    19. Zhang, Lijun & Gu, Jiawei & Zhu, Huaibao & Hu, Kuoliang & Li, Xiang & Jiao, Liuyang & Miao, Junjie & Liu, Jing & Wang, Zhiwei, 2021. "Rationality research of the adjustment law for the blade pitch angle of H-type vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 484-496.
    20. Lerch, Markus & De-Prada-Gil, Mikel & Molins, Climent, 2019. "The influence of different wind and wave conditions on the energy yield and downtime of a Spar-buoy floating wind turbine," Renewable Energy, Elsevier, vol. 136(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:678-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.