IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2735-d878821.html
   My bibliography  Save this article

Output Power Control and Load Mitigation of a Horizontal Axis Wind Turbine with a Fully Coupled Aeroelastic Model: Novel Sliding Mode Perspective

Author

Listed:
  • Hongfu Zhang

    (School of Civil Engineering, Northeast Forestry University, Harbin 150040, China)

  • Jiahao Wen

    (School of Civil Engineering, Northeast Forestry University, Harbin 150040, China)

  • Farshad Golnary

    (Department of Civil Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
    Department of Mechanical Engineering, Sharif University of Technology, Tehran 1458889694, Iran)

  • Lei Zhou

    (Department of Civil Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

Abstract

The power control of horizontal axis wind turbines can affect significantly the vibration loads and fatigue life of the tower and the blades. In this paper, we both consider the power control and vibration load mitigation of the tower fore-aft vibration. For this purpose, at first, we developed a fully coupled model of the NREL 5MW turbine. This model considers the full aeroelastic behaviour of the blades and tower and is validated by experiment results, comparing the time history data with the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code which is developed by NREL (National Renewable Energy Lab in the United States). In the next, novel sensorless control algorithms are developed based on the supper twisting sliding mode control theory and sliding mode observer for disturbance rejection. In region II (the wind speed is between the cut-in and rated wind velocity), the novel sensorless control algorithm increased the power coefficient in comparison to the conventional indirect speed control (ISC) method (the conventional method in the industry). In region III (the wind speed is between the rated and cut-out speed), an adaptive neural fuzzy inference system (ANFIS) is developed to estimate pitch sensitivity. The rotor speed, pitch angle, and effective wind velocity are inputs, and pitch sensitivity is the output. The designed novel pitch control performance is compared with the gain scheduled PI (GPI) method (the conventional approach in this region). The simulation results demonstrate that the flapwise blade displacement is reduced significantly. Finally, to reduce the fore-aft vibration of the tower, a tuned mass damper (TMD) was designed by using the genetic algorithm and the fully coupled model. In comparison to the literature body, we demonstrate that the fully coupled model provides much better accuracy in comparison to the uncoupled model to estimate the vibration loads.

Suggested Citation

  • Hongfu Zhang & Jiahao Wen & Farshad Golnary & Lei Zhou, 2022. "Output Power Control and Load Mitigation of a Horizontal Axis Wind Turbine with a Fully Coupled Aeroelastic Model: Novel Sliding Mode Perspective," Mathematics, MDPI, vol. 10(15), pages 1-40, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2735-:d:878821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    2. Lin, Zhongwei & Chen, Zhenyu & Liu, Jizhen & Wu, Qiuwei, 2019. "Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy," Applied Energy, Elsevier, vol. 236(C), pages 307-317.
    3. Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
    4. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    5. Araghi, A. Roghani & Riahy, G.H. & Carlson, O. & Gros, S., 2020. "Enhancing the net energy of wind turbine using wind prediction and economic NMPC with high-accuracy nonlinear WT models," Renewable Energy, Elsevier, vol. 151(C), pages 750-763.
    6. Pan, Lin & Wang, Xudong, 2020. "Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control," Renewable Energy, Elsevier, vol. 159(C), pages 221-237.
    7. Huang, Sen & Lin, Yashen & Chinde, Venkatesh & Ma, Xu & Lian, Jianming, 2021. "Simulation-based performance evaluation of model predictive control for building energy systems," Applied Energy, Elsevier, vol. 281(C).
    8. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
    9. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    10. Song, Dongran & Liu, Junbo & Yang, Yinggang & Yang, Jian & Su, Mei & Wang, Yun & Gui, Ning & Yang, Xuebing & Huang, Lingxiang & Hoon Joo, Young, 2021. "Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm," Energy, Elsevier, vol. 221(C).
    11. Golnary, Farshad & Moradi, Hamed, 2018. "Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation," Renewable Energy, Elsevier, vol. 127(C), pages 495-508.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanwei Jing & Hexu Sun & Lei Zhang & Tieling Zhang, 2017. "Variable Speed Control of Wind Turbines Based on the Quasi-Continuous High-Order Sliding Mode Method," Energies, MDPI, vol. 10(10), pages 1-21, October.
    2. Yashar Mousavi & Geraint Bevan & Ibrahim Beklan Küçükdemiral & Afef Fekih, 2021. "Maximum Power Extraction from Wind Turbines Using a Fault-Tolerant Fractional-Order Nonsingular Terminal Sliding Mode Controller," Energies, MDPI, vol. 14(18), pages 1-16, September.
    3. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    4. Golnary, Farshad & Moradi, Hamed, 2022. "Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 50-69.
    5. Chan Roh, 2022. "Deep-Learning-Based Pitch Controller for Floating Offshore Wind Turbine Systems with Compensation for Delay of Hydraulic Actuators," Energies, MDPI, vol. 15(9), pages 1-18, April.
    6. Golnary, Farshad & Tse, K.T., 2021. "Novel sensorless fault-tolerant pitch control of a horizontal axis wind turbine with a new hybrid approach for effective wind velocity estimation," Renewable Energy, Elsevier, vol. 179(C), pages 1291-1315.
    7. Song, Dongran & Tu, Yanping & Wang, Lei & Jin, Fangjun & Li, Ziqun & Huang, Chaoneng & Xia, E & Rizk-Allah, Rizk M. & Yang, Jian & Su, Mei & Hoon Joo, Young, 2022. "Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator," Applied Energy, Elsevier, vol. 312(C).
    8. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. MacPhee, David W. & Beyene, Asfaw, 2015. "Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor," Energy, Elsevier, vol. 90(P1), pages 1055-1065.
    10. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    11. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    12. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    13. Pan, Lin & Xiong, Yong & Zhu, Ze & Wang, Leichong, 2022. "Research on variable pitch control strategy of direct-driven offshore wind turbine using KELM wind speed soft sensor," Renewable Energy, Elsevier, vol. 184(C), pages 1002-1017.
    14. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    15. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    16. Abajian, Alexander & Pretnar, Nick, 2021. "An Aggregate Perspective on the Geo-spatial Distribution of Residential Solar Panels," MPRA Paper 105481, University Library of Munich, Germany.
    17. Khasanzoda, Nasrullo & Safaraliev, Murodbek & Zicmane, Inga & Beryozkina, Svetlana & Rahimov, Jamshed & Ahyoev, Javod, 2022. "Use of smart grid based wind resources in isolated power systems," Energy, Elsevier, vol. 253(C).
    18. Haiyang Shang & Fang Su & Serhat Yüksel & Hasan Dinçer, 2021. "Identifying the Strategic Priorities of the Technical Factors for the Sustainable Low Carbon Industry Based on Macroeconomic Conditions," SAGE Open, , vol. 11(2), pages 21582440211, May.
    19. Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
    20. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2735-:d:878821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.