IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v63y2014icp597-616.html
   My bibliography  Save this article

Structural integrity of a direct-drive generator for a floating wind turbine

Author

Listed:
  • Sethuraman, Latha
  • Venugopal, Vengatesan
  • Zavvos, Aristeidis
  • Mueller, Markus

Abstract

In this work, the suitability of a direct-drive radial flux permanent magnet generator is examined as a probable drive-train candidate for a stepped-spar floating wind turbine system that supports a 2 MW downwind turbine. The suitability of the generator is assessed based on the structural integrity of its design (i.e., the stability of the air-gap between the rotor and stator) in response to the nacelle motions and its possible design implications on the overall system. Air gap deflections due to structural deflection and bearing tolerances were examined independently. The nacelle motions are obtained from experimental and numerical investigations on a 1:100 scale model. ANSYS suite is used to estimate the structural deformations of the generator and the changes in the air-gap distribution. Also, a simplified analytical model is used to compute the resulting changes in flux density and force distribution along the rotor periphery. The analytical model is also validated by 2D magneto-static simulations by utilising Finite Element Methods Magnetics software (FEMM).

Suggested Citation

  • Sethuraman, Latha & Venugopal, Vengatesan & Zavvos, Aristeidis & Mueller, Markus, 2014. "Structural integrity of a direct-drive generator for a floating wind turbine," Renewable Energy, Elsevier, vol. 63(C), pages 597-616.
  • Handle: RePEc:eee:renene:v:63:y:2014:i:c:p:597-616
    DOI: 10.1016/j.renene.2013.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113005557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sethuraman, Latha & Venugopal, Vengatesan, 2013. "Hydrodynamic response of a stepped-spar floating wind turbine: Numerical modelling and tank testing," Renewable Energy, Elsevier, vol. 52(C), pages 160-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A Albani & MZ Ibrahim & KH Yong & ZM Yusop & MA Jusoh & AR Ridzuan, 2021. "The wind energy potential in Kudat Malaysia by considering the levelized cost of energy for combined wind turbine capacities," Energy & Environment, , vol. 32(7), pages 1149-1169, November.
    2. Li, Yan & Dong, Yuxing & Zhang, Qiang & Cao, Lihua, 2014. "Design, analysis and implementation of a constant-voltage power generation system based on a novel memory machine," Energy, Elsevier, vol. 76(C), pages 875-883.
    3. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    4. W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    2. Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
    3. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    4. Niccolo Bruschi & Giulio Ferri & Enzo Marino & Claudio Borri, 2020. "Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine," Energies, MDPI, vol. 13(23), pages 1-14, December.
    5. Ishihara, Takeshi & Zhang, Shining, 2019. "Prediction of dynamic response of semi-submersible floating offshore wind turbine using augmented Morison's equation with frequency dependent hydrodynamic coefficients," Renewable Energy, Elsevier, vol. 131(C), pages 1186-1207.
    6. Zeng, Fanxu & Zhang, Ningchuan & Huang, Guoxing & Gu, Qian & He, Meng, 2023. "Dynamic response of floating offshore wind turbines under freak waves with large crest and deep trough," Energy, Elsevier, vol. 278(C).
    7. Li, Yan & Zhu, Qiang & Liu, Liqin & Tang, Yougang, 2018. "Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines," Renewable Energy, Elsevier, vol. 122(C), pages 576-588.
    8. Meng, Haoran & Su, Hao & Guo, Jia & Qu, Timing & Lei, Liping, 2022. "Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions," Renewable Energy, Elsevier, vol. 181(C), pages 1325-1337.
    9. Tomasicchio, Giuseppe Roberto & D'Alessandro, Felice & Avossa, Alberto Maria & Riefolo, Luigia & Musci, Elena & Ricciardelli, Francesco & Vicinanza, Diego, 2018. "Experimental modelling of the dynamic behaviour of a spar buoy wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 412-432.
    10. Carlo Ruzzo & Giuseppe Failla & Maurizio Collu & Vincenzo Nava & Vincenzo Fiamma & Felice Arena, 2016. "Operational Modal Analysis of a Spar-Type Floating Platform Using Frequency Domain Decomposition Method," Energies, MDPI, vol. 9(11), pages 1-15, October.
    11. Maria Ikhennicheu & Arthur Blanc & Benoat Danglade & Jean-Christophe Gilloteaux, 2022. "OrcaFlex Modelling of a Multi-Body Floating Solar Island Subjected to Waves," Energies, MDPI, vol. 15(23), pages 1-17, December.
    12. Cian J. Desmond & Jan-Christoph Hinrichs & Jimmy Murphy, 2019. "Uncertainty in the Physical Testing of Floating Wind Energy Platforms’ Accuracy versus Precision," Energies, MDPI, vol. 12(3), pages 1-14, January.
    13. Lerch, Markus & De-Prada-Gil, Mikel & Molins, Climent, 2019. "The influence of different wind and wave conditions on the energy yield and downtime of a Spar-buoy floating wind turbine," Renewable Energy, Elsevier, vol. 136(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:63:y:2014:i:c:p:597-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.