IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6407-d456710.html
   My bibliography  Save this article

Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine

Author

Listed:
  • Niccolo Bruschi

    (Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139 Firenze, Italy)

  • Giulio Ferri

    (Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139 Firenze, Italy)

  • Enzo Marino

    (Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139 Firenze, Italy)

  • Claudio Borri

    (Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139 Firenze, Italy)

Abstract

The spar buoy platform for offshore wind turbines is the most utilized type and the OC3 Hywind system design is largely used in research. This system is usually moored with three catenary cables with 120° between each other. Adding clump weights to the mooring lines has an influence on the platform response and on the mooring line tension. However, the optimal choice for their position and weight is still an open issue, especially considering the multitude of sea states the platform can be exposed to. In this study, therefore, an analysis on the influence of two such variables on the platform response and on the mooring line tension is presented. FAST by the National Renewable Energy Laboratory (NREL) is used to perform time domain simulations and Response Amplitude Operators are adopted as the main indicators of the clump weights effects. Results show that the clump weight mass is not as influential as the position, which turns out to be optimal, especially for the Surge degree of freedom, when closest to the platform.

Suggested Citation

  • Niccolo Bruschi & Giulio Ferri & Enzo Marino & Claudio Borri, 2020. "Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine," Energies, MDPI, vol. 13(23), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6407-:d:456710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marino, Enzo & Giusti, Alessandro & Manuel, Lance, 2017. "Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds," Renewable Energy, Elsevier, vol. 102(PA), pages 157-169.
    2. Carlos Emilio Arboleda Chavez & Vasiliki Stratigaki & Minghao Wu & Peter Troch & Alexander Schendel & Mario Welzel & Raúl Villanueva & Torsten Schlurmann & Leen De Vos & Dogan Kisacik & Francisco Tave, 2019. "Large-Scale Experiments to Improve Monopile Scour Protection Design Adapted to Climate Change—The PROTEUS Project," Energies, MDPI, vol. 12(9), pages 1-25, May.
    3. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    4. Agota Mockutė & Enzo Marino & Claudio Lugni & Claudio Borri, 2019. "Comparison of Nonlinear Wave-Loading Models on Rigid Cylinders in Regular Waves," Energies, MDPI, vol. 12(21), pages 1-22, October.
    5. Giulio Ferri & Enzo Marino & Claudio Borri, 2020. "Optimal Dimensions of a Semisubmersible Floating Platform for a 10 MW Wind Turbine," Energies, MDPI, vol. 13(12), pages 1-20, June.
    6. Adam, Frank & Myland, Thomas & Schuldt, Burkhard & Großmann, Jochen & Dahlhaus, Frank, 2014. "Evaluation of internal force superposition on a TLP for wind turbines," Renewable Energy, Elsevier, vol. 71(C), pages 271-275.
    7. Sethuraman, Latha & Venugopal, Vengatesan, 2013. "Hydrodynamic response of a stepped-spar floating wind turbine: Numerical modelling and tank testing," Renewable Energy, Elsevier, vol. 52(C), pages 160-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferri, Giulio & Marino, Enzo, 2023. "Site-specific optimizations of a 10 MW floating offshore wind turbine for the Mediterranean Sea," Renewable Energy, Elsevier, vol. 202(C), pages 921-941.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    2. Ferri, Giulio & Marino, Enzo, 2023. "Site-specific optimizations of a 10 MW floating offshore wind turbine for the Mediterranean Sea," Renewable Energy, Elsevier, vol. 202(C), pages 921-941.
    3. Ferri, Giulio & Marino, Enzo & Bruschi, Niccolò & Borri, Claudio, 2022. "Platform and mooring system optimization of a 10 MW semisubmersible offshore wind turbine," Renewable Energy, Elsevier, vol. 182(C), pages 1152-1170.
    4. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    5. Giulio Ferri & Enzo Marino & Claudio Borri, 2020. "Optimal Dimensions of a Semisubmersible Floating Platform for a 10 MW Wind Turbine," Energies, MDPI, vol. 13(12), pages 1-20, June.
    6. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    7. Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
    8. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    9. Rongyong Zhao & Daheng Dong & Cuiling Li & Steven Liu & Hao Zhang & Miyuan Li & Wenzhong Shen, 2020. "An Improved Power Control Approach for Wind Turbine Fatigue Balancing in an Offshore Wind Farm," Energies, MDPI, vol. 13(7), pages 1-20, March.
    10. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Wu, Minghao & Stratigaki, Vasiliki & Fazeres-Ferradosa, Tiago & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Troch, Peter, 2023. "Experimental uncertainty analysis of monopile scour protection stability tests," Renewable Energy, Elsevier, vol. 210(C), pages 174-187.
    12. He, Jiao & Jin, Xin & Xie, S.Y. & Cao, Le & Lin, Yifan & Wang, Ning, 2019. "Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines," Renewable Energy, Elsevier, vol. 141(C), pages 305-321.
    13. Cao, Qun & Xiao, Longfei & Guo, Xiaoxian & Liu, Mingyue, 2020. "Second-order responses of a conceptual semi-submersible 10 MW wind turbine using full quadratic transfer functions," Renewable Energy, Elsevier, vol. 153(C), pages 653-668.
    14. Wakui, Tetsuya & Yoshimura, Motoki & Yokoyama, Ryohei, 2017. "Multiple-feedback control of power output and platform pitching motion for a floating offshore wind turbine-generator system," Energy, Elsevier, vol. 141(C), pages 563-578.
    15. Li, Liang & Cheng, Zhengshun & Yuan, Zhiming & Gao, Yan, 2018. "Short-term extreme response and fatigue damage of an integrated offshore renewable energy system," Renewable Energy, Elsevier, vol. 126(C), pages 617-629.
    16. Juhun Song & Hee-Chang Lim, 2019. "Study of Floating Wind Turbine with Modified Tension Leg Platform Placed in Regular Waves," Energies, MDPI, vol. 12(4), pages 1-18, February.
    17. Ren, Guorui & Liu, Jinfu & Wan, Jie & Li, Fei & Guo, Yufeng & Yu, Daren, 2018. "The analysis of turbulence intensity based on wind speed data in onshore wind farms," Renewable Energy, Elsevier, vol. 123(C), pages 756-766.
    18. Ishihara, Takeshi & Zhang, Shining, 2019. "Prediction of dynamic response of semi-submersible floating offshore wind turbine using augmented Morison's equation with frequency dependent hydrodynamic coefficients," Renewable Energy, Elsevier, vol. 131(C), pages 1186-1207.
    19. Zeng, Fanxu & Zhang, Ningchuan & Huang, Guoxing & Gu, Qian & He, Meng, 2023. "Dynamic response of floating offshore wind turbines under freak waves with large crest and deep trough," Energy, Elsevier, vol. 278(C).
    20. Li, Yan & Zhu, Qiang & Liu, Liqin & Tang, Yougang, 2018. "Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines," Renewable Energy, Elsevier, vol. 122(C), pages 576-588.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6407-:d:456710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.