IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3565-d173905.html
   My bibliography  Save this article

PV Waste Management at the Crossroads of Circular Economy and Energy Transition: The Case of South Korea

Author

Listed:
  • Hana Kim

    (Corporate Course for Climate Change, Sejong University, Seoul 05006, Korea)

  • Hun Park

    (Asian Institute for Energy, Environment & Sustainability, Seoul National University, Seoul 08826, Korea)

Abstract

The South Korean government’s renewable energy deployment plan aims to increase the share of electricity generated from renewables to 20% by 2030. To reach this goal, the rate of photovoltaic (PV) installation will accelerate in the coming years. This energy transition creates a new challenge: PV wastes. This study estimates the amount of PV waste generated, the material composition of PV waste, and the amount of recyclable metals in South Korea by 2080 under four different scenarios (combining shape parameters of 5.3759 [regular-loss] and 3.5 [early-loss] with PV module lifespans of 25 and 30 years) using the Weibull distribution function. The annual waste generated will fluctuate over time depending on the scenario, but between 4299 and 5764 thousand tons of PV waste will have been generated by 2080. Under the early-loss/25-year lifespan scenario, annual PV waste generation will increase to exceed 130,000 tons in 2045, then decrease through 2063 before increasing once again. The fluctuation in annual PV waste generation appears stronger under regular-loss scenarios. An appropriate system for the monitoring, collection, and storage of PV waste needs to be arranged even before the volume becomes high enough for recycling to be economically viable. International cooperation could be a way to maintain the PV waste stream at an economically feasible scale. It would also be a good idea if the PV module could be designed in a way that would enable easier recycling or reuse.

Suggested Citation

  • Hana Kim & Hun Park, 2018. "PV Waste Management at the Crossroads of Circular Economy and Energy Transition: The Case of South Korea," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3565-:d:173905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    2. Paiano, Annarita, 2015. "Photovoltaic waste assessment in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 99-112.
    3. Sica, Daniela & Malandrino, Ornella & Supino, Stefania & Testa, Mario & Lucchetti, Maria Claudia, 2018. "Management of end-of-life photovoltaic panels as a step towards a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2934-2945.
    4. McDonald, N.C. & Pearce, J.M., 2010. "Producer responsibility and recycling solar photovoltaic modules," Energy Policy, Elsevier, vol. 38(11), pages 7041-7047, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su-Hee Lee & Yong-Chul Jang, 2023. "Analysis for End-of-Life Solar Panel Generations by Renewable Energy Supply towards Carbon Neutrality in South Korea," Energies, MDPI, vol. 16(24), pages 1-15, December.
    2. Preeti Nain & Arun Kumar, 2023. "Understanding manufacturers’ and consumers’ perspectives towards end-of-life solar photovoltaic waste management and recycling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2264-2284, March.
    3. Vishnu S Prabhu & Shraddha Shrivastava & Kakali Mukhopadhyay, 2022. "Life Cycle Assessment of Solar Photovoltaic in India: A Circular Economy Approach," Circular Economy and Sustainability,, Springer.
    4. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.
    5. Nain, Preeti & Kumar, Arun, 2020. "Understanding the possibility of material release from end-of-life solar modules: A study based on literature review and survey analysis," Renewable Energy, Elsevier, vol. 160(C), pages 903-918.
    6. Wang, Chen & Feng, Kuishuang & Liu, Xi & Wang, Peng & Chen, Wei-Qiang & Li, Jiashuo, 2022. "Looming challenge of photovoltaic waste under China’s solar ambition: A spatial–temporal assessment," Applied Energy, Elsevier, vol. 307(C).
    7. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    8. Magdalena Bogacka & Martyna Potempa & Bartłomiej Milewicz & Dariusz Lewandowski & Krzysztof Pikoń & Katarzyna Klejnowska & Piotr Sobik & Edyta Misztal, 2020. "PV Waste Thermal Treatment According to the Circular Economy Concept," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    9. Kyounga Lee & Jongmun Cha, 2020. "Towards Improved Circular Economy and Resource Security in South Korea," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    10. Omar H. AL-Zoubi & Moayyad Shawaqfah & Fares Almomani & Rebhi A. Damash & Kamel Al-Zboon, 2022. "Photovoltaic Solar Cells and Panels Waste in Jordan: Figures, Facts, and Concerns," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    11. Hyeong-Jin Lee & Kwang-Hoon Yoon & Joong-Woo Shin & Jae-Chul Kim & Sung-Min Cho, 2020. "Optimal Parameters of Volt–Var Function in Smart Inverters for Improving System Performance," Energies, MDPI, vol. 13(9), pages 1-15, May.
    12. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    13. Lucía Doyle & German Cavero & Mircea Modreanu, 2023. "Applying the 12 Principles of Green Engineering in Low TRL Electronics: A Case Study of an Energy-Harvesting Platform," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    14. Anna Manuella Melo Nunes & Luiz Moreira Coelho Junior & Raphael Abrahão & Edvaldo Pereira Santos Júnior & Flávio José Simioni & Paulo Rotella Junior & Luiz Célio Souza Rocha, 2023. "Public Policies for Renewable Energy: A Review of the Perspectives for a Circular Economy," Energies, MDPI, vol. 16(1), pages 1-28, January.
    15. Verity Tan & Pablo R. Dias & Nathan Chang & Rong Deng, 2022. "Estimating the Lifetime of Solar Photovoltaic Modules in Australia," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    16. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2021. "Weather Data Mixing Models for Day-Ahead PV Forecasting in Small-Scale PV Plants," Energies, MDPI, vol. 14(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Jain, Suresh & Sharma, Tanya & Gupta, Anil Kumar, 2022. "End-of-life management of solar PV waste in India: Situation analysis and proposed policy framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Nain, Preeti & Kumar, Arun, 2020. "Initial metal contents and leaching rate constants of metals leached from end-of-life solar photovoltaic waste: An integrative literature review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Ornella Malandrino & Daniela Sica & Mario Testa & Stefania Supino, 2017. "Policies and Measures for Sustainable Management of Solar Panel End-of-Life in Italy," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    5. Koami Soulemane Hayibo & Pierce Mayville & Ravneet Kaur Kailey & Joshua M. Pearce, 2020. "Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics," Energies, MDPI, vol. 13(23), pages 1-24, November.
    6. Cucchiella, Federica & D׳Adamo, Idiano & Rosa, Paolo, 2015. "End-of-Life of used photovoltaic modules: A financial analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 552-561.
    7. Ozoegwu, Chigbogu Godwin & Akpan, Patrick Udeme-obong, 2021. "Solar energy policy directions for safer and cleaner development in Nigeria," Energy Policy, Elsevier, vol. 150(C).
    8. Kang, Sukmin & Yoo, Sungyeol & Lee, Jina & Boo, Bonghyun & Ryu, Hojin, 2012. "Experimental investigations for recycling of silicon and glass from waste photovoltaic modules," Renewable Energy, Elsevier, vol. 47(C), pages 152-159.
    9. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    10. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    11. Domínguez, Adriana & Geyer, Roland, 2019. "Photovoltaic waste assessment of major photovoltaic installations in the United States of America," Renewable Energy, Elsevier, vol. 133(C), pages 1188-1200.
    12. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    13. Ronnie D. Lipschutz & Dustin Mulvaney, 2013. "The road not taken, round II: centralized vs. distributed energy strategies and human security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 22, pages 483-506, Edward Elgar Publishing.
    14. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    15. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    16. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    17. Barriga, Gladys D.C. & Louzada-Neto, Franscisco & Cancho, Vicente G., 2011. "The complementary exponential power lifetime model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1250-1259, March.
    18. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    19. Dias, Pablo R. & Schmidt, Lucas & Chang, Nathan L. & Monteiro Lunardi, Marina & Deng, Rong & Trigger, Blair & Bonan Gomes, Lucas & Egan, Renate & Veit, Hugo, 2022. "High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    20. Michael Redlinger & Roderick Eggert & Michael Woodhouse, 2014. "Evaluating the Availability of Gallium, Indium, and Tellurium from Recycled Photovoltaic Modules," Working Papers 2014-09, Colorado School of Mines, Division of Economics and Business.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3565-:d:173905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.