IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v213y2025ics136403212500142x.html
   My bibliography  Save this article

Spatial potential analysis and site selection for agrivoltaics in Germany

Author

Listed:
  • Hauger, Salome
  • Lieb, Vanessa
  • Glaser, Rüdiger

Abstract

This study presents a geodata-based analysis of agrivoltaic potential and site selection in Germany, addressing the country's photovoltaic expansion targets to achieve climate neutrality by 2045. By integrating Geographic Information Systems with the Analytical Hierarchy Process, the study quantifies available agricultural areas and identifies optimal sites. Notably, it is the first to apply a Multi-Criteria Decision-Making approach considering all agricultural classes. Two criteria catalogs were developed: the first for potential analysis, incorporating geographical factors and legal and regulatory requirements, categorized into hard and soft restrictions; the second for site selection, considering political-economic and agro-economic suitability criteria, with weightings assigned by experts. A Land Suitability Index was calculated to classify areas into five suitability classes, from most suitable to least suitable. The study introduced two new potential levels, regulatory and synergy potential. This research showed a regulatory potential of 7900 GWp (Scenario 1) and 5600 GWp (Scenario 2) and a synergy potential of 136 GWp (Scenario 1) and 98 GWp (Scenario 2). The most suitable areas, in terms of economic feasibility, indicate an installable capacity of 800 GWp (Scenario 1) and 500 GWp (Scenario 2), approximately 3.5- and 2.5-times Germany's photovoltaic expansion targets for 2030. The sensitivity analysis indicated that the most suitable areas varying between 8.4 % and 12.8 %, suggesting the robustness of the results. This study contributes to the Sustainable Development Goal 7 and 13, providing a robust data foundation for policymakers and stakeholders to promote the expansion of renewable energy and contribute to achieving climate goals.

Suggested Citation

  • Hauger, Salome & Lieb, Vanessa & Glaser, Rüdiger, 2025. "Spatial potential analysis and site selection for agrivoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:rensus:v:213:y:2025:i:c:s136403212500142x
    DOI: 10.1016/j.rser.2025.115469
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212500142X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ustaoglu, E. & Sisman, S. & Aydınoglu, A.C., 2021. "Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques," Ecological Modelling, Elsevier, vol. 455(C).
    2. Feuerbacher, Arndt & Laub, Moritz & Högy, Petra & Lippert, Christian & Pataczek, Lisa & Schindele, Stephan & Wieck, Christine & Zikeli, Sabine, 2021. "An analytical framework to estimate the economics and adoption potential of dual land-use systems: The case of agrivoltaics," Agricultural Systems, Elsevier, vol. 192(C).
    3. Willockx, Brecht & Reher, Thomas & Lavaert, Cas & Herteleer, Bert & Van de Poel, Bram & Cappelle, Jan, 2024. "Design and evaluation of an agrivoltaic system for a pear orchard," Applied Energy, Elsevier, vol. 353(PB).
    4. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    5. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Rios, R. & Duarte, S., 2021. "Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process – Geographic information systems (AHP-GIS) in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Sánchez-Lozano, Juan M. & Teruel-Solano, Jerónimo & Soto-Elvira, Pedro L. & Socorro García-Cascales, M., 2013. "Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 544-556.
    8. Williams, Henry J. & Wang, Yipu & Yuan, Bo & Wang, Haomiao & Zhang, K. Max, 2025. "Rethinking agrivoltaic incentive programs: A science-based approach to encourage practical design solutions," Applied Energy, Elsevier, vol. 377(PA).
    9. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    10. Zoellner, Jan & Schweizer-Ries, Petra & Wemheuer, Christin, 2008. "Public acceptance of renewable energies: Results from case studies in Germany," Energy Policy, Elsevier, vol. 36(11), pages 4136-4141, November.
    11. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    12. Dimitriou, Iason C. & Sarmas, Elissaios & Trachanas, Georgios P. & Marinakis, Vangelis & Doukas, Haris, 2025. "Multi-Criteria GIS-based offshore wind farm site selection: Case study in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    13. Resch, Gustav & Held, Anne & Faber, Thomas & Panzer, Christian & Toro, Felipe & Haas, Reinhard, 2008. "Potentials and prospects for renewable energies at global scale," Energy Policy, Elsevier, vol. 36(11), pages 4048-4056, November.
    14. Ali, Shahid & Stewart, Rodney A. & Sahin, Oz & Vieira, Abel Silva, 2023. "Integrated GIS-AHP-based approach for off-river pumped hydro energy storage site selection," Applied Energy, Elsevier, vol. 337(C).
    15. Saaty, T. L. & Vargas, L. G., 1979. "Estimating technological coefficients by the analytic hierarchy process," Socio-Economic Planning Sciences, Elsevier, vol. 13(6), pages 333-336.
    16. Maier, Rachel & Lütz, Luna & Risch, Stanley & Kullmann, Felix & Weinand, Jann & Stolten, Detlef, 2024. "Potential of floating, parking, and agri photovoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    17. Martin Unger & Tobia Lakes, 2023. "Land Use Conflicts and Synergies on Agricultural Land in Brandenburg, Germany," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
    18. Gkeka-Serpetsidaki, Pandora & Tsoutsos, Theocharis, 2022. "A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete," Energy, Elsevier, vol. 239(PD).
    19. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    20. Aly, Ahmed & Jensen, Steen Solvang & Pedersen, Anders Branth, 2017. "Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis," Renewable Energy, Elsevier, vol. 113(C), pages 159-175.
    21. Feuerbacher, Arndt & Herrmann, Tristan & Neuenfeldt, Sebastian & Laub, Moritz & Gocht, Alexander, 2022. "Estimating the economics and adoption potential of agrivoltaics in Germany using a farm-level bottom-up approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    2. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    3. Yılmaz, Kutay & Dinçer, Ali Ersin & Ayhan, Elif N., 2023. "Exploring flood and erosion risk indices for optimal solar PV site selection and assessing the influence of topographic resolution," Renewable Energy, Elsevier, vol. 216(C).
    4. Alam, Habeel & Butt, Nauman Zafar, 2024. "How does module tracking for agrivoltaics differ from standard photovoltaics? Food, energy, and technoeconomic implications," Renewable Energy, Elsevier, vol. 235(C).
    5. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    6. Maier, Rachel & Lütz, Luna & Risch, Stanley & Kullmann, Felix & Weinand, Jann & Stolten, Detlef, 2024. "Potential of floating, parking, and agri photovoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    7. C, Rösch & E, Fakharizadehshirazi, 2024. "The spatial socio-technical potential of agrivoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    8. López-Bravo, Celia & Mora-López, Llanos & Sidrach-deCardona, Mariano & Márquez-Ballesteros, María José, 2024. "A comprehensive analysis based on GIS-AHP to minimise the social and environmental impact of the installation of large-scale photovoltaic plants in south Spain," Renewable Energy, Elsevier, vol. 226(C).
    9. Zainali, Sebastian & Lu, Silvia Ma & Fernández-Solas, Álvaro & Cruz-Escabias, Alejandro & Fernández, Eduardo F. & Zidane, Tekai Eddine Khalil & Honningdalsnes, Erlend Hustad & Nygård, Magnus Moe & Lel, 2025. "Modelling, simulation, and optimisation of agrivoltaic systems: a comprehensive review," Applied Energy, Elsevier, vol. 386(C).
    10. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    11. Kumdokrub, Tikumporn & You, Fengqi, 2025. "Techno-economic and environmental optimization of agrivoltaics: A case study of Cornell University," Applied Energy, Elsevier, vol. 384(C).
    12. Jesús A. Prieto-Amparán & Alfredo Pinedo-Alvarez & Carlos R. Morales-Nieto & María C. Valles-Aragón & Alan Álvarez-Holguín & Federico Villarreal-Guerrero, 2021. "A Regional GIS-Assisted Multi-Criteria Evaluation of Site-Suitability for the Development of Solar Farms," Land, MDPI, vol. 10(2), pages 1-19, February.
    13. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    14. Jamil, Uzair & Hickey, Thomas & Pearce, Joshua M., 2024. "Solar energy modelling and proposed crops for different types of agrivoltaics systems," Energy, Elsevier, vol. 304(C).
    15. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    16. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    17. Doorga, Jay R.S. & Hall, Jim W. & Eyre, Nick, 2022. "Geospatial multi-criteria analysis for identifying optimum wind and solar sites in Africa: Towards effective power sector decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Dimitriou, Iason C. & Sarmas, Elissaios & Trachanas, Georgios P. & Marinakis, Vangelis & Doukas, Haris, 2025. "Multi-Criteria GIS-based offshore wind farm site selection: Case study in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    19. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    20. Tercan, Emre & Eymen, Abdurrahman & Urfalı, Tuğrul & Saracoglu, Burak Omer, 2021. "A sustainable framework for spatial planning of photovoltaic solar farms using GIS and multi-criteria assessment approach in Central Anatolia, Turkey," Land Use Policy, Elsevier, vol. 102(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:213:y:2025:i:c:s136403212500142x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.