IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v210y2025ics1364032124009559.html
   My bibliography  Save this article

Bioenergy with carbon capture and storage technology to achieve net zero emissions–A review

Author

Listed:
  • Sher, Farooq
  • Hameed, Saman
  • Omerbegović, Narcisa Smječanin
  • Wang, Bohong
  • Hai, Irfan Ul
  • Rashid, Tazien
  • Teoh, Yew Heng
  • Yildiz, Magdalena Joka

Abstract

Bioenergy with carbon capture and sequestration (BECCS) technology has emerged as a flourishing and advanced approach for capturing CO2 since it promotes clean energy, supports sustainable resource management, advances environmental sustainability and negative emissions. Thus, this novel comprehensive review thoroughly explores the contribution of biomass oxy-fuel technology in capturing CO2 and achieving net zero emissions. Furthermore, the review meticulously addresses pollution emissions and ash-related issues along with control strategies in the fluidized bed oxy-fuel configuration, providing in-depth insights into scale-up feasibility and techno-economic and environmental analysis. Remarkably, oxy-fuel combustion (OFC) achieves CO2 recovery rates of up to 96.24%, with around 70% of flue gas recirculated following biomass combustion. Increased biomass raises CO levels, especially above 30%, with rapid conversion to CO2 at 100% O2. Under oxy-fuel conditions, NOx and SOx emissions are reduced by utilizing effective strategies like gas and oxygen staging and limestone injection for desulfurization. Combustion produces fly ash with minerals and heavy metals, causing boiler fouling, while PM1 contains K, Cl, P, S and Na, and PM1-10 includes Mg, Ca and Si. Furthermore, 1% NH4Cl-modified biomass char effectively removes mercury. Globally, there are 20 BECCS projects spanning various methods and fuels. Additionally, oxy-fuel process scored 10/10 for both global warning potential and acidification pollution, indicating minimal emissions. It may become more financially viable than fossil fuels with a carbon tax exceeding $28.3 per tonne of CO2. BECCS has reached TRL 7 in the industry, with CO2 capture costs ranging from $40 to $120 per ton, offering a cost advantage over other technologies.

Suggested Citation

  • Sher, Farooq & Hameed, Saman & Omerbegović, Narcisa Smječanin & Wang, Bohong & Hai, Irfan Ul & Rashid, Tazien & Teoh, Yew Heng & Yildiz, Magdalena Joka, 2025. "Bioenergy with carbon capture and storage technology to achieve net zero emissions–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009559
    DOI: 10.1016/j.rser.2024.115229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    2. Díez, Luis I. & García-Mariaca, Alexander & Canalís, Paula & Llera, Eva, 2023. "Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 284(C).
    3. de Diego, L.F. & de las Obras-Loscertales, M. & Rufas, A. & García-Labiano, F. & Gayán, P. & Abad, A. & Adánez, J., 2013. "Pollutant emissions in a bubbling fluidized bed combustor working in oxy-fuel operating conditions: Effect of flue gas recirculation," Applied Energy, Elsevier, vol. 102(C), pages 860-867.
    4. Mladenović, Milica & Paprika, Milijana & Marinković, Ana, 2018. "Denitrification techniques for biomass combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3350-3364.
    5. Seo, Su Been & Kim, Hyung Woo & Kang, Seo Yeong & Go, Eun Sol & Keel, Sang In & Lee, See Hoon, 2021. "Techno-economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle," Energy, Elsevier, vol. 233(C).
    6. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Benítez-Guerrero, M. & Perejón, A. & Romeo, L.M., 2017. "The Oxy-CaL process: A novel CO2 capture system by integrating partial oxy-combustion with the Calcium-Looping process," Applied Energy, Elsevier, vol. 196(C), pages 1-17.
    7. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).
    9. Vu, Thang Toan & Lim, Young-Il & Song, Daesung & Mun, Tae-Young & Moon, Ji-Hong & Sun, Dowon & Hwang, Yoon-Tae & Lee, Jae-Goo & Park, Young Cheol, 2020. "Techno-economic analysis of ultra-supercritical power plants using air- and oxy-combustion circulating fluidized bed with and without CO2 capture," Energy, Elsevier, vol. 194(C).
    10. Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Ling, Jester Lih Jie & Yang, Won & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2023. "A comparative review on advanced biomass oxygen fuel combustion technologies for carbon capture and storage," Energy, Elsevier, vol. 284(C).
    12. Seddighi, Sadegh & Clough, Peter T. & Anthony, Edward J. & Hughes, Robin W. & Lu, Ping, 2018. "Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds," Applied Energy, Elsevier, vol. 232(C), pages 527-542.
    13. Symonds, Robert T. & Hughes, Robin W. & De Las Obras Loscertales, Margarita, 2020. "Oxy-pressurized fluidized bed combustion: Configuration and options analysis," Applied Energy, Elsevier, vol. 262(C).
    14. Tan, Y. & Jia, L. & Wu, Y. & Anthony, E.J., 2012. "Experiences and results on a 0.8MWth oxy-fuel operation pilot-scale circulating fluidized bed," Applied Energy, Elsevier, vol. 92(C), pages 343-347.
    15. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    16. Wenju Cai & Benjamin Ng & Guojian Wang & Agus Santoso & Lixin Wu & Kai Yang, 2022. "Increased ENSO sea surface temperature variability under four IPCC emission scenarios," Nature Climate Change, Nature, vol. 12(3), pages 228-231, March.
    17. Kim, Hyung Woo & Seo, Su Been & Kang, Seo Yeong & Go, Eun Sol & Oh, Seung Seok & Lee, YongWoon & Yang, Won & Lee, See Hoon, 2021. "Effect of flue gas recirculation on efficiency of an indirect supercritical CO2 oxy-fuel circulating fluidized bed power plant," Energy, Elsevier, vol. 227(C).
    18. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei, 2017. "Reduction of recycled NO over char during oxy-fuel fluidized bed combustion: Effects of operating parameters," Applied Energy, Elsevier, vol. 199(C), pages 310-322.
    19. Kayahan, Ufuk & Özdoğan, Sibel, 2016. "Oxygen enriched combustion and co-combustion of lignites and biomass in a 30 kWth circulating fluidized bed," Energy, Elsevier, vol. 116(P1), pages 317-328.
    20. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    21. Tan, Liping & Cai, Lei & Fu, Yidan & Zhou, Zining & Guan, Yanwen, 2023. "Numerical investigation of biomass and liquefied natural gas driven oxy-fuel combustion power system," Renewable Energy, Elsevier, vol. 208(C), pages 94-104.
    22. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    23. Krzywanski, J. & Czakiert, T. & Nowak, W. & Shimizu, T. & Zylka, A. & Idziak, K. & Sosnowski, M. & Grabowska, K., 2022. "Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility:A comprehensive model," Energy, Elsevier, vol. 251(C).
    24. Trobajo, J.R. & Antuña-Nieto, C. & Rodríguez, E. & García, R. & López-Antón, M.A. & Martínez-Tarazona, M.R., 2018. "Carbon-based sorbents impregnated with iron oxides for removing mercury in energy generation processes," Energy, Elsevier, vol. 159(C), pages 648-655.
    25. Lasek, Janusz A. & Janusz, Marcin & Zuwała, Jarosław & Głód, Krzysztof & Iluk, Andrzej, 2013. "Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures," Energy, Elsevier, vol. 62(C), pages 105-112.
    26. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    27. Yang, Xin & Clements, Alastair & Szuhánszki, János & Huang, Xiaohong & Farias Moguel, Oscar & Li, Jia & Gibbins, Jon & Liu, Zhaohui & Zheng, Chuguang & Ingham, Derek & Ma, Lin & Nimmo, Bill & Pourkash, 2018. "Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces," Applied Energy, Elsevier, vol. 211(C), pages 523-537.
    28. Fu, Yidan & Cai, Lei & Liu, Chunming & Wu, Mouliang & Guan, Yanwen, 2024. "Thermodynamic and economic performance comparison of biomass gasification oxy-fuel combustion power plant in different gasifying atmospheres using advanced exergy and exergoeconomic approach," Renewable Energy, Elsevier, vol. 226(C).
    29. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Cheng, Zeyang & Liu, Zexi, 2020. "Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion," Energy, Elsevier, vol. 206(C).
    30. Ling, Jester Lih Jie & Oh, Seung Seok & Park, Hyun Jun & Lee, See Hoon, 2023. "Process simulation and economic evaluation of a biomass oxygen fuel circulating fluidized bed combustor with an indirect supercritical carbon dioxide cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    31. Wang, Wenyu & Wen, Chang & Liu, Tianyu & Li, Changkang & Chen, Lichun & Wu, Jianqun & Shao, Yuhao & Liu, Enze, 2020. "Effects of various occurrence modes of inorganic components on the emissions of PM10 during torrefied biomass combustion under air and oxy-fuel conditions," Applied Energy, Elsevier, vol. 259(C).
    32. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    33. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    34. Vilardi, Giorgio & Verdone, Nicola, 2022. "Exergy analysis of municipal solid waste incineration processes: The use of O2-enriched air and the oxy-combustion process," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhaotianyi & Li, Zhan & Luo, Yong & Liu, Bin & Mao, Hui & Chen, Yongqiang & Fan, Meijun & Ruan, Renhui & Hu, Zhongfa & Wang, Xuebin, 2025. "Emission characteristics of co-incineration of MSW pyrolysis char and coal," Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seddighi, Sadegh & Clough, Peter T. & Anthony, Edward J. & Hughes, Robin W. & Lu, Ping, 2018. "Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds," Applied Energy, Elsevier, vol. 232(C), pages 527-542.
    2. Ling, Jester Lih Jie & Yang, Won & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2023. "A comparative review on advanced biomass oxygen fuel combustion technologies for carbon capture and storage," Energy, Elsevier, vol. 284(C).
    3. Ling, Jester Lih Jie & Oh, Seung Seok & Park, Hyun Jun & Lee, See Hoon, 2023. "Process simulation and economic evaluation of a biomass oxygen fuel circulating fluidized bed combustor with an indirect supercritical carbon dioxide cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    5. Don Rukmal Liyanage & Kasun Hewage & Hirushie Karunathilake & Gyan Chhipi-Shrestha & Rehan Sadiq, 2021. "Carbon Capture Systems for Building-Level Heating Systems—A Socio-Economic and Environmental Evaluation," Sustainability, MDPI, vol. 13(19), pages 1-30, September.
    6. Sefa Yalcin & Alp Er Ş. Konukman & Adnan Midilli, 2020. "A perspective on fossil fuel based flue gas emission reduction technologies," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 664-677, August.
    7. Chen, Ge & Chuanhao, Wang & Shiyuan, Li, 2024. "Research on the effect of CO2 and H2O on NO reduction of biomass char by the equivalent characteristic spectrum method via an on-line mass spectrometer," Energy, Elsevier, vol. 312(C).
    8. Pang, Lei & Shao, Yingjuan & Zhong, Wenqi & Gong, Zheng & Liu, Hao, 2020. "Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor," Energy, Elsevier, vol. 194(C).
    9. Singh, Ravi Inder & Kumar, Rajesh, 2016. "Current status and experimental investigation of oxy-fired fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 398-420.
    10. Dai, Gaofeng & Zhang, Jiaye & Wang, Xuebin & Tan, Houzhang & Rahman, Zia ur, 2022. "Calcination and desulfurization characteristics of calcium carbonate in pressurized oxy-combustion," Energy, Elsevier, vol. 261(PA).
    11. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    12. Seo, Su Been & Kim, Hyung Woo & Kang, Seo Yeong & Go, Eun Sol & Keel, Sang In & Lee, See Hoon, 2021. "Techno-economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle," Energy, Elsevier, vol. 233(C).
    13. Li, Jichao & Han, Wei & Li, Peijing & Ma, Wenjing & Xue, Xiaodong & Jin, Hongguang, 2023. "High-efficiency power generation system with CO2 capture based on cascading coal gasification employing chemical recuperation," Energy, Elsevier, vol. 283(C).
    14. Seo, Su Been & Go, Eun Sol & Ling, Jester Lih Jie & Lee, See Hoon, 2022. "Techno-economic assessment of a solar-assisted biomass gasification process," Renewable Energy, Elsevier, vol. 193(C), pages 23-31.
    15. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    16. Brenda Raho & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2022. "A Critical Analysis of the Oxy-Combustion Process: From Mathematical Models to Combustion Product Analysis," Energies, MDPI, vol. 15(18), pages 1-25, September.
    17. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Cormos, Calin-Cristian, 2020. "Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification," Energy, Elsevier, vol. 191(C).
    19. Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).
    20. Chen, Zhichao & Qiao, Yanyu & Guan, Shuo & Wang, Zhenwang & Zheng, Yu & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio," Energy, Elsevier, vol. 239(PD).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.