IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v227y2021ics0360544221007362.html
   My bibliography  Save this article

Effect of flue gas recirculation on efficiency of an indirect supercritical CO2 oxy-fuel circulating fluidized bed power plant

Author

Listed:
  • Kim, Hyung Woo
  • Seo, Su Been
  • Kang, Seo Yeong
  • Go, Eun Sol
  • Oh, Seung Seok
  • Lee, YongWoon
  • Yang, Won
  • Lee, See Hoon

Abstract

This paper deals with and oxy-fuel circulating fluidized bed (Oxy-CFB) power plant with air separate unit (ASU), CO2 compression and purification unit, and an indirect supercritical CO2 cycle. This novel power plant was designed and modeled by using Aspen Plus at commercial scale to investigate the possibility and the effect of recirculated flue gas conditions. The indirect S–CO2 oxy-CFB power plant had higher net efficiencies compared with oxy-CFB power plant with steam cycles because the phase of CO2 does not change during the operation. Also, the effect of the amount of water retained in flue gas stream generated at the CFB boiler on the overall net efficiency was analyzed. By decreasing the temperature of recirculated flue gas from 90 °C to 40 °C, water retained in flue gas decreased, and input O2 concentration in combustor increased from 34.7 to 38.5 vol%. When flue gas recirculation temperature was 40 °C, the boiler efficiency was 99.6%, and the overall net efficiency was 43.1%. Although approximately 20% of the total power is the power consumption of the ASU and CPU, high net efficiency was achieved in this novel power plant.

Suggested Citation

  • Kim, Hyung Woo & Seo, Su Been & Kang, Seo Yeong & Go, Eun Sol & Oh, Seung Seok & Lee, YongWoon & Yang, Won & Lee, See Hoon, 2021. "Effect of flue gas recirculation on efficiency of an indirect supercritical CO2 oxy-fuel circulating fluidized bed power plant," Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007362
    DOI: 10.1016/j.energy.2021.120487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221007362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Say, Nuriye Peker & Yucel, Muzaffer, 2006. "Energy consumption and CO2 emissions in Turkey: Empirical analysis and future projection based on an economic growth," Energy Policy, Elsevier, vol. 34(18), pages 3870-3876, December.
    2. Hong, Jongsup & Field, Randall & Gazzino, Marco & Ghoniem, Ahmed F., 2010. "Operating pressure dependence of the pressurized oxy-fuel combustion power cycle," Energy, Elsevier, vol. 35(12), pages 5391-5399.
    3. Gładysz, Paweł & Stanek, Wojciech & Czarnowska, Lucyna & Węcel, Gabriel & Langørgen, Øyvind, 2017. "Thermodynamic assessment of an integrated MILD oxyfuel combustion power plant," Energy, Elsevier, vol. 137(C), pages 761-774.
    4. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    5. Rizk, J. & Nemer, M. & Clodic, D., 2012. "A real column design exergy optimization of a cryogenic air separation unit," Energy, Elsevier, vol. 37(1), pages 417-429.
    6. Qing, Menglei & Jin, Bo & Ma, Jinchen & Zou, Xixian & Wang, Xiaoyu & Zheng, Chuguang & Zhao, Haibo, 2020. "Thermodynamic and economic performance of oxy-combustion power plants integrating chemical looping air separation," Energy, Elsevier, vol. 206(C).
    7. Moon, Ji-Hong & Jo, Sung-Ho & Park, Sung Jin & Khoi, Nguyen Hoang & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Lee, Jae-Goo & Mun, Tae-Young, 2019. "Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 166(C), pages 183-192.
    8. Chen, Shiyi & Yu, Ran & Soomro, Ahsanullah & Xiang, Wenguo, 2019. "Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture," Energy, Elsevier, vol. 175(C), pages 445-455.
    9. Hong, Jongsup & Chaudhry, Gunaranjan & Brisson, J.G. & Field, Randall & Gazzino, Marco & Ghoniem, Ahmed F., 2009. "Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor," Energy, Elsevier, vol. 34(9), pages 1332-1340.
    10. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    11. Lee, See Hoon & Lee, Tae Hee & Jeong, Sang Mun & Lee, Jong Min, 2019. "Economic analysis of a 600 mwe ultra supercritical circulating fluidized bed power plant based on coal tax and biomass co-combustion plans," Renewable Energy, Elsevier, vol. 138(C), pages 121-127.
    12. Köne, Aylin Çigdem & Büke, Tayfun, 2010. "Forecasting of CO2 emissions from fuel combustion using trend analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2906-2915, December.
    13. Liu, Xuejiao & Zhong, Wenqi & Li, Pingjiao & Xiang, Jun & Liu, Guoyao, 2019. "Design and performance analysis of coal-fired fluidized bed for supercritical CO2 power cycle," Energy, Elsevier, vol. 176(C), pages 468-478.
    14. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seo, Su Been & Go, Eun Sol & Ling, Jester Lih Jie & Lee, See Hoon, 2022. "Techno-economic assessment of a solar-assisted biomass gasification process," Renewable Energy, Elsevier, vol. 193(C), pages 23-31.
    2. Ling, Jester Lih Jie & Yang, Won & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2023. "A comparative review on advanced biomass oxygen fuel combustion technologies for carbon capture and storage," Energy, Elsevier, vol. 284(C).
    3. Li, Zhaozhi & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2023. "Optimal design and thermodynamic evaluation of supercritical CO2 oxy-coal circulating fluidized bed power generation systems," Energy, Elsevier, vol. 277(C).
    4. Tan, Liping & Cai, Lei & Fu, Yidan & Zhou, Zining & Guan, Yanwen, 2023. "Numerical investigation of biomass and liquefied natural gas driven oxy-fuel combustion power system," Renewable Energy, Elsevier, vol. 208(C), pages 94-104.
    5. Ling, Jester Lih Jie & Oh, Seung Seok & Park, Hyun Jun & Lee, See Hoon, 2023. "Process simulation and economic evaluation of a biomass oxygen fuel circulating fluidized bed combustor with an indirect supercritical carbon dioxide cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    2. Xu, Mengmeng & Lin, Boqiang & Wang, Siquan, 2021. "Towards energy conservation by improving energy efficiency? Evidence from China’s metallurgical industry," Energy, Elsevier, vol. 216(C).
    3. Zhou, Yinbo & Li, Hansheng & Huang, Jilei & Zhang, Ruilin & Wang, Shijie & Hong, Yidu & Yang, Yongliang, 2021. "Influence of coal deformation on the Knudsen number of gas flow in coal seams," Energy, Elsevier, vol. 233(C).
    4. Azimi, Seyyed Shahabeddin & Namazi, Mohammad Hosain, 2015. "Modeling of combustion of gas oil and natural gas in a furnace: Comparison of combustion characteristics," Energy, Elsevier, vol. 93(P1), pages 458-465.
    5. Kim, Taewoo & Park, So Dam & Lee, Uen Do & Park, Byeong Cheol & Park, Kyoung Il & Hong, Jongsup, 2021. "Thermodynamic analysis of the 2nd generation pressurized fluidized-bed combustion cycle utilizing an oxy-coal boiler and a gasifier," Energy, Elsevier, vol. 236(C).
    6. Atherton, John & Xie, Wanni & Aditya, Leonardus Kevin & Zhou, Xiaochi & Karmakar, Gourab & Akroyd, Jethro & Mosbach, Sebastian & Lim, Mei Qi & Kraft, Markus, 2021. "How does a carbon tax affect Britain’s power generation composition?," Applied Energy, Elsevier, vol. 298(C).
    7. Symonds, Robert T. & Hughes, Robin W. & De Las Obras Loscertales, Margarita, 2020. "Oxy-pressurized fluidized bed combustion: Configuration and options analysis," Applied Energy, Elsevier, vol. 262(C).
    8. Chen, Shiyi & Yu, Ran & Soomro, Ahsanullah & Xiang, Wenguo, 2019. "Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture," Energy, Elsevier, vol. 175(C), pages 445-455.
    9. Ying, Zhou & Xin-gang, Zhao, 2021. "The impact of Renewable Portfolio Standards on carbon emission trading under the background of China’s electricity marketization reform," Energy, Elsevier, vol. 226(C).
    10. Ali, E.S. & Abd Elazim, S.M. & Abdelaziz, A.Y., 2016. "Ant Lion Optimization Algorithm for Renewable Distributed Generations," Energy, Elsevier, vol. 116(P1), pages 445-458.
    11. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Sualp, M. Nedim, 2016. "How did the US economy react to shale gas production revolution? An advanced time series approach," Energy, Elsevier, vol. 116(P1), pages 963-977.
    12. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    13. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    14. Seo, Su Been & Kim, Hyung Woo & Kang, Seo Yeong & Go, Eun Sol & Keel, Sang In & Lee, See Hoon, 2021. "Techno-economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle," Energy, Elsevier, vol. 233(C).
    15. Golberg, Alexander, 2015. "Environmental exergonomics for sustainable design and analysis of energy systems," Energy, Elsevier, vol. 88(C), pages 314-321.
    16. Rahman, Zia ur & Wang, Xuebin & Zhang, Jiaye & Yang, Zhiwei & Dai, Gaofeng & Verma, Piyush & Mikulcic, Hrvoje & Vujanovic, Milan & Tan, Houzhang & Axelbaum, Richard L., 2022. "Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Zebian, Hussam & Mitsos, Alexander, 2014. "A split concept for HRSG (heat recovery steam generators) with simultaneous area reduction and performance improvement," Energy, Elsevier, vol. 71(C), pages 421-431.
    18. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Gopan, Akshay & Kumfer, Benjamin M. & Phillips, Jeffrey & Thimsen, David & Smith, Richard & Axelbaum, Richard L., 2014. "Process design and performance analysis of a Staged, Pressurized Oxy-Combustion (SPOC) power plant for carbon capture," Applied Energy, Elsevier, vol. 125(C), pages 179-188.
    20. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.