IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v170y2022ics1364032122008371.html
   My bibliography  Save this article

Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview

Author

Listed:
  • Rakshith, Bairi Levi
  • Asirvatham, Lazarus Godson
  • Angeline, Appadurai Anitha
  • Manova, Stephen
  • Bose, Jefferson Raja
  • Selvin Raj, J Perinba
  • Mahian, Omid
  • Wongwises, Somchai

Abstract

Thermal ground planes (TGPs) are considered to be one the most promising thermal management devices for cooling the high heat flux miniaturized power electronic devices. This article presents an overview of the latest advancement in the design and operation of TGPs and its applications to various fields. It also summarizes the recent experimental, numerical investigations on internally grooved, mesh wick, sintered wick, hybrid wick, electro hydro dynamic effect, micro pillared and metal foam embedded TGPs. The heat transfer characteristics and mechanisms involved when using different working fluids, wick structures and materials for enhancing the heat transfer performance and operating range of TGPs are discussed. This review also provides future scope and insight of using TGPs to increase the efficiency and reliability of modern power electronic devices in renewable resource sector and other related applications.

Suggested Citation

  • Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:rensus:v:170:y:2022:i:c:s1364032122008371
    DOI: 10.1016/j.rser.2022.112956
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122008371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakraborty, Arindam, 2011. "Advancements in power electronics and drives in interface with growing renewable energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1816-1827, May.
    2. Llorente Iglesias, Rosario & Lacal Arantegui, Roberto & Aguado Alonso, Mónica, 2011. "Power electronics evolution in wind turbines—A market-based analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4982-4993.
    3. Chan, C.W. & Siqueiros, E. & Ling-Chin, J. & Royapoor, M. & Roskilly, A.P., 2015. "Heat utilisation technologies: A critical review of heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 615-627.
    4. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    5. Sureshkumar, R. & Mohideen, S. Tharves & Nethaji, N., 2013. "Heat transfer characteristics of nanofluids in heat pipes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 397-410.
    6. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    7. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.
    8. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2018. "Power electronics converters: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2028-2044.
    9. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    11. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    12. Li, Shuang-Fei & Liu, Zhen-hua, 2020. "Parametric study of rotating heat pipe performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    13. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    14. Cucchiella, Federica & D’Adamo, Idiano & Lenny Koh, S.C. & Rosa, Paolo, 2016. "A profitability assessment of European recycling processes treating printed circuit boards from waste electrical and electronic equipments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 749-760.
    15. Godson, Lazarus & Raja, B. & Mohan Lal, D. & Wongwises, S., 2010. "Enhancement of heat transfer using nanofluids--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 629-641, February.
    16. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    17. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Xun, Qian & Xun, Boyang & Li, Zuxin & Wang, Peiliang & Cai, Zhiduan, 2017. "Application of SiC power electronic devices in secondary power source for aircraft," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1336-1342.
    19. Pathak, Pankaj & Srivastava, Rajiv Ranjan & Ojasvi,, 2017. "Assessment of legislation and practices for the sustainable management of waste electrical and electronic equipment in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 220-232.
    20. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    21. Khan, O. & Xiao, W., 2017. "Review and qualitative analysis of submodule-level distributed power electronic solutions in PV power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 516-528.
    22. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    23. Danikas, Michael G. & Karlis, Athanasios, 2011. "A review on electrical machines insulation aging and its relation to the power electronics arrangements with emphasis on wind turbine generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1748-1752, May.
    24. Rafi, Fida Hasan Md & Hossain, M.J. & Rahman, Md Shamiur & Taghizadeh, Seyedfoad, 2020. "An overview of unbalance compensation techniques using power electronic converters for active distribution systems with renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    25. Du, Bin & Hu, Eric & Kolhe, Mohan, 2013. "An experimental platform for heat pipe solar collector testing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 119-125.
    26. Sohel Murshed, S.M. & Nieto de Castro, C.A., 2017. "A critical review of traditional and emerging techniques and fluids for electronics cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 821-833.
    27. Raja Singh, R. & Raj Chelliah, Thanga & Agarwal, Pramod, 2014. "Power electronics in hydro electric energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 944-959.
    28. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    29. Han, Xiaohong & Wang, Xuehui & Zheng, Haoce & Xu, Xiangguo & Chen, Guangming, 2016. "Review of the development of pulsating heat pipe for heat dissipation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 692-709.
    30. Srimuang, W. & Amatachaya, P., 2012. "A review of the applications of heat pipe heat exchangers for heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4303-4315.
    31. Chaudhry, Hassam Nasarullah & Hughes, Ben Richard & Ghani, Saud Abdul, 2012. "A review of heat pipe systems for heat recovery and renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2249-2259.
    32. Mohd.Ali, Jagabar Sathik & Krishnaswamy, Vijayakumar, 2018. "An assessment of recent multilevel inverter topologies with reduced power electronics components for renewable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3379-3399.
    33. Dutta, Tanushree & Kim, Ki-Hyun & Deep, Akash & Szulejko, Jan E. & Vellingiri, Kowsalya & Kumar, Sandeep & Kwon, Eilhann E. & Yun, Seong-Taek, 2018. "Recovery of nanomaterials from battery and electronic wastes: A new paradigm of environmental waste management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3694-3704.
    34. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    35. Awasthi, Abhishek Kumar & Li, Jinhui, 2017. "Management of electrical and electronic waste: A comparative evaluation of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 434-447.
    36. Sahoo, Santosh Kumar & Das, Mihir Kumar & Rath, Prasenjit, 2016. "Application of TCE-PCM based heat sinks for cooling of electronic components: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 550-582.
    37. Azad, E., 2012. "Assessment of three types of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2833-2838.
    38. Chakraborty, Sudipta & Kramer, Bill & Kroposki, Benjamin, 2009. "A review of power electronics interfaces for distributed energy systems towards achieving low-cost modular design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2323-2335, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.
    3. Jouhara, H. & Chauhan, A. & Nannou, T. & Almahmoud, S. & Delpech, B. & Wrobel, L.C., 2017. "Heat pipe based systems - Advances and applications," Energy, Elsevier, vol. 128(C), pages 729-754.
    4. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    6. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    7. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    8. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    9. Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.
    10. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    11. Chen, Gong & Fan, Dongqiang & Zhang, Shiwei & Sun, Yalong & Zhong, Guisheng & Wang, Zhiwei & Wan, Zhenpin & Tang, Yong, 2021. "Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices," Renewable Energy, Elsevier, vol. 163(C), pages 921-929.
    12. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Panchal, Rohit & Singh, Anju & Diwan, Hema, 2021. "Economic potential of recycling e-waste in India and its impact on import of materials," Resources Policy, Elsevier, vol. 74(C).
    15. Wang, Wei-Wei & Zhang, Hong-Liang & Song, Yong-Juan & Song, Jia-Wei & Shi, Dun-Ke & Zhao, Fu-Yun & Cai, Yang, 2022. "Fluid flow and thermal performance of the pulsating heat pipes facilitated with solar collectors: Experiments, theories and GABPNN machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1533-1547.
    16. Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.
    17. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    18. Qian, Suxin & Yu, Jianlin & Yan, Gang, 2017. "A review of regenerative heat exchange methods for various cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 535-550.
    19. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    20. Daniel Slunge & Francisco Alpizar, 2019. "Market-Based Instruments for Managing Hazardous Chemicals: A Review of the Literature and Future Research Agenda," Sustainability, MDPI, vol. 11(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:170:y:2022:i:c:s1364032122008371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.