IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v169y2022ics1364032122007870.html
   My bibliography  Save this article

Small modular reactors enable the transition to a low-carbon power system across Canada

Author

Listed:
  • Gao, Sichen
  • Huang, Guohe
  • Zhang, Xiaoyue
  • Han, Dengcheng

Abstract

The deep decarbonization of the power systems is pivotal to the efforts of global energy transition and climate mitigation. The small modular reactor (SMR) is a decarbonized, reliable and secure generating technology that can bring new possibilities for global power-sector transition. However, such a transition involves a variety of complexities even beyond conventional systems. We comprehensively explore the SMR deployment and the decarbonization pathway in a number of diversified power and jurisdictional systems under various complexities associated with multiple variables, objectives, criteria and constraints that have dynamic and interactive relationships. This effort is based on the development of an SMR-embedded multi-region power system management model (SMPM). Using Canada as an example, here we show that SMRs would play different roles in diversified power systems, particularly for fossil-fuel dependent, highly variable renewable energy-penetrated and off-grid. The introduction of SMRs to Canada would result in up to 71% (/48%) emission reduction from 2005 (/2018) level in the country by 2045. Our results would help show the significance of SMRs for supporting the global energy transition.

Suggested Citation

  • Gao, Sichen & Huang, Guohe & Zhang, Xiaoyue & Han, Dengcheng, 2022. "Small modular reactors enable the transition to a low-carbon power system across Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:rensus:v:169:y:2022:i:c:s1364032122007870
    DOI: 10.1016/j.rser.2022.112905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122007870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    3. Huang, G. H., 1998. "A hybrid inexact-stochastic water management model," European Journal of Operational Research, Elsevier, vol. 107(1), pages 137-158, May.
    4. Anton Orlov & Jana Sillmann & Ilaria Vigo, 2020. "Author Correction: Better seasonal forecasts for the renewable energy industry," Nature Energy, Nature, vol. 5(3), pages 271-271, March.
    5. Rowinski, Marcin Karol & White, Timothy John & Zhao, Jiyun, 2015. "Small and Medium sized Reactors (SMR): A review of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 643-656.
    6. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L. Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna M, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    7. Zhou, Xiong & Huang, Guohe & Zhu, Hua & Chen, Jiapei & Xu, Jinliang, 2015. "Chance-constrained two-stage fractional optimization for planning regional energy systems in British Columbia, Canada," Applied Energy, Elsevier, vol. 154(C), pages 663-677.
    8. Anton Orlov & Jana Sillmann & Ilaria Vigo, 2020. "Better seasonal forecasts for the renewable energy industry," Nature Energy, Nature, vol. 5(2), pages 108-110, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    2. Tobias Junne & Sonja Simon & Jens Buchgeister & Maximilian Saiger & Manuel Baumann & Martina Haase & Christina Wulf & Tobias Naegler, 2020. "Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
    3. Liu, Jiarui & Fu, Yuchen, 2023. "Renewable energy forecasting: A self-supervised learning-based transformer variant," Energy, Elsevier, vol. 284(C).
    4. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    5. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
    6. Porcelli, Roberto & Gibon, Thomas & Marazza, Diego & Righi, Serena & Rugani, Benedetto, 2023. "Prospective environmental impact assessment and simulation applied to an emerging biowaste-based energy technology in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    7. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.
    8. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    9. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    10. Pommeret, Aude & Ricci, Francesco & Schubert, Katheline, 2022. "Critical raw materials for the energy transition," European Economic Review, Elsevier, vol. 141(C).
    11. Gardumi, F. & Keppo, I. & Howells, M. & Pye, S. & Avgerinopoulos, G. & Lekavičius, V. & Galinis, A. & Martišauskas, L. & Fahl, U. & Korkmaz, P. & Schmid, D. & Montenegro, R. Cunha & Syri, S. & Hast, A, 2022. "Carrying out a multi-model integrated assessment of European energy transition pathways: Challenges and benefits," Energy, Elsevier, vol. 258(C).
    12. Mantas Svazas & Yuriy Bilan & Valentinas Navickas & Małgorzata Okręglicka, 2023. "Energy Transformation in Municipal Areas—Key Datasets and Their Influence on Process Evaluation," Energies, MDPI, vol. 16(17), pages 1-20, August.
    13. Prasad, Abhnil Amtesh & Yang, Yuqing & Kay, Merlinde & Menictas, Chris & Bremner, Stephen, 2021. "Synergy of solar photovoltaics-wind-battery systems in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Ge, Yongkai & Ma, Yue & Wang, Qingrui & Yang, Qing & Xing, Lu & Ba, Shusong, 2023. "Techno-economic-environmental assessment and performance comparison of a building distributed multi-energy system under various operation strategies," Renewable Energy, Elsevier, vol. 204(C), pages 685-696.
    16. Grubert, E. & Zacarias, M., 2022. "Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Tobias Naegler & Lisa Becker & Jens Buchgeister & Wolfgang Hauser & Heidi Hottenroth & Tobias Junne & Ulrike Lehr & Oliver Scheel & Ricarda Schmidt-Scheele & Sonja Simon & Claudia Sutardhio & Ingela T, 2021. "Integrated Multidimensional Sustainability Assessment of Energy System Transformation Pathways," Sustainability, MDPI, vol. 13(9), pages 1-28, May.
    18. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    19. Thi Ngoc Nguyen & Felix Musgens, 2021. "What drives the accuracy of PV output forecasts?," Papers 2111.02092, arXiv.org.
    20. Zuin, Gianlucca & Buechler, Rob & Sun, Tao & Zanocco, Chad & Galuppo, Francisco & Veloso, Adriano & Rajagopal, Ram, 2023. "Extreme event counterfactual analysis of electricity consumption in Brazil: Historical impacts and future outlook under climate change," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:169:y:2022:i:c:s1364032122007870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.