IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v44y2015icp643-656.html
   My bibliography  Save this article

Small and Medium sized Reactors (SMR): A review of technology

Author

Listed:
  • Rowinski, Marcin Karol
  • White, Timothy John
  • Zhao, Jiyun

Abstract

In this paper the authors review 25 original Small and Medium sized Reactor designs currently under development, licensing procedure or in operation. Technology overview, safety features and ability to mitigate proliferation are considered. In order to show common research trends and highlight the features of particular designs the authors choose to classify the reactors according to used technology and cooling medium. The main requirement for a new reactor design is to secure inherent and passive safety features, thus different ways to achieve it are shown. The Pressurized Water Reactor (PWR) is the most advanced and most commonly used technology. In PWR, passiveness and inherency of safety features are ensured by integrating steam generators inside the Reactor Pressure Vessel (RPV). It eliminates possibility of Loss of Cooling Accident (LOCA); moreover the technology allows swift removal of heat produced during normal or accidental conditions. Heavy Water Reactors (HWRs) are also in operation, however, the design process of improving emergency cooling system is ongoing. The design of Supercritical Water Reactor (SCWR) based on Canadian HWR is reviewed including the ongoing development in novel leakage detection method and material improvement. Liquid Metal Cooled Reactors (LMCR) are in advanced stage of research and development focusing on lead and sodium as the coolants. LMCR are secured from LOCA accidents due to low operating pressure and integration of the most elements in RPV. In case of Advanced Gas-Cooled Reactors (AGCR) the literature indicates several possible system integrations related to high operating temperature under development. AGCRs are able to use fully passive systems during all events due to their low power density. Furthermore, it is noted that the use of innovative reactor designs can mitigate proliferation concerns to an acceptable level. The authors identify the common research trend among all designs as the fuel cycle evaluation and optimization.

Suggested Citation

  • Rowinski, Marcin Karol & White, Timothy John & Zhao, Jiyun, 2015. "Small and Medium sized Reactors (SMR): A review of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 643-656.
  • Handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:643-656
    DOI: 10.1016/j.rser.2015.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115000167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddy, V. Siva & Kaushik, S.C. & Panwar, N.L., 2013. "Review on power generation scenario of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 43-48.
    2. Fischer, David W., 1981. "Planning for large-scale accidents: Learning from the Three Mile Island accident," Energy, Elsevier, vol. 6(1), pages 93-108.
    3. Egan, Joseph R., 1984. "Small reactors and the “second nuclear era”," Energy, Elsevier, vol. 9(9), pages 865-874.
    4. Bruninx, Kenneth & Madzharov, Darin & Delarue, Erik & D'haeseleer, William, 2013. "Impact of the German nuclear phase-out on Europe's electricity generation—A comprehensive study," Energy Policy, Elsevier, vol. 60(C), pages 251-261.
    5. Shropshire, David & Purvins, Arturs & Papaioannou, Ioulia & Maschio, Isabella, 2012. "Benefits and cost implications from integrating small flexible nuclear reactors with off-shore wind farms in a virtual power plant," Energy Policy, Elsevier, vol. 46(C), pages 558-573.
    6. Rokach, Joshua Z., 2011. "Reawakening the U.S. Nuclear Renaissance," The Electricity Journal, Elsevier, vol. 24(3), pages 80-82, April.
    7. Ramana, M.V. & Saikawa, Eri, 2011. "Choosing a standard reactor: International competition and domestic politics in Chinese nuclear policy," Energy, Elsevier, vol. 36(12), pages 6779-6789.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Sichen & Huang, Guohe & Zhang, Xiaoyue & Han, Dengcheng, 2022. "Small modular reactors enable the transition to a low-carbon power system across Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Li, Gang & Wang, Xueqian & Liang, Bin & Li, Xiu & Zhang, Bo & Zou, Yu, 2016. "Modeling and control of nuclear reactor cores for electricity generation: A review of advanced technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 116-128.
    3. Humphrey, Uguru Edwin & Khandaker, Mayeen Uddin, 2018. "Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 259-275.
    4. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    5. Wang, Qiang & Li, Rongrong & He, Gang, 2018. "Research status of nuclear power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 90-96.
    6. Carless, Travis S. & Talabi, Sola M. & Fischbeck, Paul S., 2019. "Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential," Energy, Elsevier, vol. 167(C), pages 740-756.
    7. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    8. Dong, Zhe & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems," Energy, Elsevier, vol. 151(C), pages 116-125.
    9. Dong, Zhe & Pan, Yifei, 2018. "A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant," Energy, Elsevier, vol. 145(C), pages 638-656.
    10. Roman Davydov & Vadim Davydov & Nikita Myazin & Valentin Dudkin, 2022. "The Multifunctional Nuclear Magnetic Flowmeter for Control to the Consumption and Condition of Coolant in Nuclear Reactors," Energies, MDPI, vol. 15(5), pages 1-17, February.
    11. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Dynamical modeling and simulation of the six-modular high temperature gas-cooled reactor plant HTR-PM600," Energy, Elsevier, vol. 155(C), pages 971-991.
    12. Haneklaus, Nils & Qvist, Staffan & Gładysz, Paweł & Bartela, Łukasz, 2023. "Why coal-fired power plants should get nuclear-ready," Energy, Elsevier, vol. 280(C).
    13. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    14. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.
    15. Zhe Dong & Yifei Pan & Zuoyi Zhang & Yujie Dong & Xiaojin Huang, 2017. "Modeling and Control of Fluid Flow Networks with Application to a Nuclear-Solar Hybrid Plant," Energies, MDPI, vol. 10(11), pages 1-21, November.
    16. Zhe Dong & Miao Liu & Di Jiang & Xiaojin Huang & Yajun Zhang & Zuoyi Zhang, 2018. "Automatic Generation Control of Nuclear Heating Reactor Power Plants," Energies, MDPI, vol. 11(10), pages 1-18, October.
    17. Alonso, Gustavo & Bilbao, Sama & Valle, Edmundo del, 2016. "Economic competitiveness of small modular reactors versus coal and combined cycle plants," Energy, Elsevier, vol. 116(P1), pages 867-879.
    18. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "Load following control of a PWR with load-dependent parameters and perturbations via fixed-time fractional-order sliding mode and disturbance observer techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Liu, Guangxu & Huang, Yanping & Wang, Junfeng & Liu, Ruilong, 2020. "A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    21. Zhe Dong, 2016. "Model-Free Coordinated Control for MHTGR-Based Nuclear Steam Supply Systems," Energies, MDPI, vol. 9(1), pages 1-14, January.
    22. Michaelson, D. & Jiang, J., 2021. "Review of integration of small modular reactors in renewable energy microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    2. Thomas, Steve, 2017. "China's nuclear export drive: Trojan Horse or Marshall Plan?," Energy Policy, Elsevier, vol. 101(C), pages 683-691.
    3. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    4. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    5. Trutnevyte, Evelina & McDowall, Will & Tomei, Julia & Keppo, Ilkka, 2016. "Energy scenario choices: Insights from a retrospective review of UK energy futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 326-337.
    6. de Frutos Cachorro, Julia & Willeghems, Gwen & Buysse, Jeroen, 2020. "Exploring investment potential in a context of nuclear phase-out uncertainty: Perfect vs. imperfect electricity markets," Energy Policy, Elsevier, vol. 144(C).
    7. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    8. Yang, Min & Liu, Qi & Zhao, Hongsheng & Li, Ziqiang & Liu, Bing & Li, Xingdong & Meng, Fanyong, 2014. "Automatic X-ray inspection for escaped coated particles in spherical fuel elements of high temperature gas-cooled reactor," Energy, Elsevier, vol. 68(C), pages 385-398.
    9. Kosugi, Takanobu, 2016. "Endogenizing the probability of nuclear exit in an optimal power-generation mix model," Energy, Elsevier, vol. 100(C), pages 102-114.
    10. Farooq, Umar & Ahmed, Jaleel & Shahbaz, Muhammad, 2022. "How various energy sources affect industrial investment? Empirical evidence from Asian economies," Energy, Elsevier, vol. 248(C).
    11. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    12. Pilpola, Sannamari & Lund, Peter D., 2018. "Effect of major policy disruptions in energy system transition: Case Finland," Energy Policy, Elsevier, vol. 116(C), pages 323-336.
    13. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    14. Nam, Hoseok & Konishi, Satoshi & Nam, Ki-Woo, 2021. "Comparative analysis of decision making regarding nuclear policy after the Fukushima Dai-ichi Nuclear Power Plant Accident: Case study in Germany and Japan," Technology in Society, Elsevier, vol. 67(C).
    15. Zimmermann, Florian & Keles, Dogan, 2022. "State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects," Working Paper Series in Production and Energy 64, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    16. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    17. Friedrich Kunz and Hannes Weigt, 2014. "Germanys Nuclear Phase Out - A Survey of the Impact since 2011 and Outlook to 2023," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    18. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    19. Gangyang, Zheng & Xianke, Peng & Xiaozhen, Li & Yexi, Kang & Xiangeng, Zhao, 2021. "Research on the standardization strategy of China's nuclear industry," Energy Policy, Elsevier, vol. 155(C).
    20. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:643-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.