IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v44y2015icp643-656.html
   My bibliography  Save this item

Small and Medium sized Reactors (SMR): A review of technology

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Gang & Wang, Xueqian & Liang, Bin & Li, Xiu & Zhang, Bo & Zou, Yu, 2016. "Modeling and control of nuclear reactor cores for electricity generation: A review of advanced technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 116-128.
  2. Carless, Travis S. & Talabi, Sola M. & Fischbeck, Paul S., 2019. "Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential," Energy, Elsevier, vol. 167(C), pages 740-756.
  3. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
  4. Qu, Chunzi & Bang, Rasmus Noss, 2024. "European Grid Development Modeling and Analysis: Established Frameworks, Research Trends, and Future Opportunities," Discussion Papers 2024/11, Norwegian School of Economics, Department of Business and Management Science.
  5. Roman Davydov & Vadim Davydov & Nikita Myazin & Valentin Dudkin, 2022. "The Multifunctional Nuclear Magnetic Flowmeter for Control to the Consumption and Condition of Coolant in Nuclear Reactors," Energies, MDPI, vol. 15(5), pages 1-17, February.
  6. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.
  7. Zhe Dong & Miao Liu & Di Jiang & Xiaojin Huang & Yajun Zhang & Zuoyi Zhang, 2018. "Automatic Generation Control of Nuclear Heating Reactor Power Plants," Energies, MDPI, vol. 11(10), pages 1-18, October.
  8. Alonso, Gustavo & Bilbao, Sama & Valle, Edmundo del, 2016. "Economic competitiveness of small modular reactors versus coal and combined cycle plants," Energy, Elsevier, vol. 116(P1), pages 867-879.
  9. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "Load following control of a PWR with load-dependent parameters and perturbations via fixed-time fractional-order sliding mode and disturbance observer techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  10. Liu, Guangxu & Huang, Yanping & Wang, Junfeng & Liu, Ruilong, 2020. "A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  11. Zhe Dong & Zuoyi Zhang & Yujie Dong & Lei Shi & Xiaojin Huang & Yunlong Zhu & Di Jiang, 2025. "Testing the feasibility of multi-modular design in an HTR-PM nuclear plant," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  12. Gao, Sichen & Huang, Guohe & Zhang, Xiaoyue & Han, Dengcheng, 2022. "Small modular reactors enable the transition to a low-carbon power system across Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
  13. Humphrey, Uguru Edwin & Khandaker, Mayeen Uddin, 2018. "Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 259-275.
  14. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
  15. Wang, Qiang & Li, Rongrong & He, Gang, 2018. "Research status of nuclear power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 90-96.
  16. Dong, Zhe & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems," Energy, Elsevier, vol. 151(C), pages 116-125.
  17. Dong, Zhe & Pan, Yifei, 2018. "A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant," Energy, Elsevier, vol. 145(C), pages 638-656.
  18. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Dynamical modeling and simulation of the six-modular high temperature gas-cooled reactor plant HTR-PM600," Energy, Elsevier, vol. 155(C), pages 971-991.
  19. Haneklaus, Nils & Qvist, Staffan & Gładysz, Paweł & Bartela, Łukasz, 2023. "Why coal-fired power plants should get nuclear-ready," Energy, Elsevier, vol. 280(C).
  20. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
  21. Athanasios Ioannis Arvanitidis & Miltiadis Alamaniotis, 2024. "Integrating an Ensemble Reward System into an Off-Policy Reinforcement Learning Algorithm for the Economic Dispatch of Small Modular Reactor-Based Energy Systems," Energies, MDPI, vol. 17(9), pages 1-21, April.
  22. Zhe Dong & Yifei Pan & Zuoyi Zhang & Yujie Dong & Xiaojin Huang, 2017. "Modeling and Control of Fluid Flow Networks with Application to a Nuclear-Solar Hybrid Plant," Energies, MDPI, vol. 10(11), pages 1-21, November.
  23. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
  24. Zhe Dong, 2016. "Model-Free Coordinated Control for MHTGR-Based Nuclear Steam Supply Systems," Energies, MDPI, vol. 9(1), pages 1-14, January.
  25. Dong, Zhe & Li, Junyi & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2025. "The definition of entropy production metric with application in passivity-based control of thermodynamic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
  26. Michaelson, D. & Jiang, J., 2021. "Review of integration of small modular reactors in renewable energy microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.