IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v135y2017icp53-67.html
   My bibliography  Save this article

Model-free adaptive control law for nuclear superheated-steam supply systems

Author

Listed:
  • Dong, Zhe
  • Pan, Yifei
  • Zhang, Zuoyi
  • Dong, Yujie
  • Huang, Xiaojin

Abstract

Nuclear steam supply system (NSSS), which provides saturated or superheated steam to the secondary loop system for electricity or cogeneration, is central in a nuclear plant. The control of NSSS is important for the safe, stable and efficient plant operation. Nuclear superheated-steam supply system (Su-NSSS), which is equipped with an under moderated fission reactor and a once-through steam generator (OTSG) for producing superheated steam flow, is an important type of NSSS that widely applied in the nuclear plants based on the common large pressurized water reactors (PWR) and small modular reactors (SMRs) such as integral PWR (iPWR) and modular high temperature gas-cooled reactor (MHTGR). There is still very limited results for the control of Su-NSSS. Motivated by the gap between the importance and the lack of results in the field of Su-NSSS control, a model-free adaptive power-level control law is developed for Su-NSSSs with forced primary circulation in this paper. This new control law is free from physical and thermal-hydraulic parameters, is in the simple proportional-integral (PI) or proportional-differential (PD) form. To verify the feasibility of the newly-built Su-NSSS controller, it is applied to the NSSS control of a two modular high temperature gas-cooled nuclear plant with comparison to a specific MHTGR-based NSSS control law. Numerical simulation results show that this new control law can improve the transient performance of neutron flux and steam temperature in normal operation case, and can realize system resilience in some abnormal cases.

Suggested Citation

  • Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:53-67
    DOI: 10.1016/j.energy.2017.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vujić, Jasmina & Bergmann, Ryan M. & Škoda, Radek & Miletić, Marija, 2012. "Small modular reactors: Simpler, safer, cheaper?," Energy, Elsevier, vol. 45(1), pages 288-295.
    2. Zhe Dong, 2016. "Model-Free Coordinated Control for MHTGR-Based Nuclear Steam Supply Systems," Energies, MDPI, vol. 9(1), pages 1-14, January.
    3. Lykidi, Maria & Gourdel, Pascal, 2015. "How to manage flexible nuclear power plants in a deregulated electricity market from the point of view of social welfare?," Energy, Elsevier, vol. 85(C), pages 167-180.
    4. Pascal Gourdel & Maria Lykidi, 2015. "How to manage flexible nuclear power plants in a deregulated electricity market from the point of view of social welfare?," PSE-Ecole d'économie de Paris (Postprint) hal-01477134, HAL.
    5. Rowinski, Marcin Karol & White, Timothy John & Zhao, Jiyun, 2015. "Small and Medium sized Reactors (SMR): A review of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 643-656.
    6. Garcia, Humberto E. & Chen, Jun & Kim, Jong S. & Vilim, Richard B. & Binder, William R. & Bragg Sitton, Shannon M. & Boardman, Richard D. & McKellar, Michael G. & Paredis, Christiaan J.J., 2016. "Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems," Energy, Elsevier, vol. 107(C), pages 234-258.
    7. Pascal Gourdel & Maria Lykidi, 2015. "How to manage flexible nuclear power plants in a deregulated electricity market from the point of view of social welfare?," Post-Print hal-01477134, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunlong Zhu & Zhe Dong & Xiaojin Huang & Yujie Dong & Yajun Zhang & Zuoyi Zhang, 2022. "Passivity-Based Power-Level Control of Nuclear Reactors," Energies, MDPI, vol. 15(14), pages 1-11, July.
    2. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    3. Wang, Linna & Chen, Chuqi & Chen, Lekang & Li, Zheng & Zeng, Wenjie, 2023. "A coordinated control methodology for small pressurized water reactor with steam dump control system," Energy, Elsevier, vol. 282(C).
    4. Jiang, Di & Dong, Zhe, 2019. "Practical dynamic matrix control of MHTGR-based nuclear steam supply systems," Energy, Elsevier, vol. 185(C), pages 695-707.
    5. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Coordinated control of mHTGR-based nuclear steam supply systems considering cold helium temperature," Energy, Elsevier, vol. 284(C).
    6. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    7. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).
    8. Lu, Nianci & Pan, Lei & Liu, Zhenxiang & Song, Yajun & Si, Paiyou, 2021. "Flexible operation control strategy for thermos-exchanger water level of two-by-one combined cycle gas turbine based on heat network storage utilization," Energy, Elsevier, vol. 232(C).
    9. Hui, Jiuwu & Yuan, Jingqi, 2022. "Neural network-based adaptive fault-tolerant control for load following of a MHTGR with prescribed performance and CRDM faults," Energy, Elsevier, vol. 257(C).
    10. Hui, Jiuwu & Yuan, Jingqi, 2022. "Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques," Energy, Elsevier, vol. 241(C).
    11. Wu, Shifa & Ma, Xiaolong & Liu, Junfeng & Wan, Jiashuang & Wang, Pengfei & Su, G.H., 2023. "A load following control strategy for Chinese Modular High-Temperature Gas-Cooled Reactor HTR-PM," Energy, Elsevier, vol. 263(PA).
    12. Hui, Jiuwu & Yuan, Jingqi, 2021. "Chattering-free higher order sliding mode controller with a high-gain observer for the load following of a pressurized water reactor," Energy, Elsevier, vol. 223(C).
    13. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    14. Zhe Dong, 2017. "Boolean Network-Based Sensor Selection with Application to the Fault Diagnosis of a Nuclear Plant," Energies, MDPI, vol. 10(12), pages 1-13, December.
    15. Dong, Zhe & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems," Energy, Elsevier, vol. 151(C), pages 116-125.
    16. Yu Jia & Zhenkui Wu & Jihong Zhang & Peihong Yang & Zilei Zhang, 2022. "Control Strategy of Flywheel Energy Storage System Based on Primary Frequency Modulation of Wind Power," Energies, MDPI, vol. 15(5), pages 1-14, March.
    17. Di Jiang & Zhe Dong & Miao Liu & Xiaojin Huang, 2018. "Dynamic Matrix Control for the Thermal Power of MHTGR-Based Nuclear Steam Supply System," Energies, MDPI, vol. 11(10), pages 1-15, October.
    18. Dong, Zhe & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2020. "Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system," Applied Energy, Elsevier, vol. 259(C).
    19. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Dynamical modeling and simulation of the six-modular high temperature gas-cooled reactor plant HTR-PM600," Energy, Elsevier, vol. 155(C), pages 971-991.
    20. Zhe Dong & Yifei Pan & Zuoyi Zhang & Yujie Dong & Xiaojin Huang, 2017. "Modeling and Control of Fluid Flow Networks with Application to a Nuclear-Solar Hybrid Plant," Energies, MDPI, vol. 10(11), pages 1-21, November.
    21. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    22. Yang, Ping & Ling, Weihao & Tian, Ke & Zeng, Min & Wang, Qiuwang, 2023. "Flow distribution and heat transfer performance of two-phase flow in parallel flow heat exchange system," Energy, Elsevier, vol. 270(C).
    23. Dong, Zhe & Li, Bowen & Li, Junyi & Jiang, Di & Guo, Zhiwu & Huang, Xiaojin & Zhang, Zuoyi, 2021. "Passivity based control of heat exchanger networks with application to nuclear heating," Energy, Elsevier, vol. 223(C).
    24. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    2. Dong, Zhe & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems," Energy, Elsevier, vol. 151(C), pages 116-125.
    3. Dong, Zhe & Pan, Yifei, 2018. "A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant," Energy, Elsevier, vol. 145(C), pages 638-656.
    4. Zhe Dong & Yifei Pan & Zuoyi Zhang & Yujie Dong & Xiaojin Huang, 2017. "Modeling and Control of Fluid Flow Networks with Application to a Nuclear-Solar Hybrid Plant," Energies, MDPI, vol. 10(11), pages 1-21, November.
    5. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Dynamical modeling and simulation of the six-modular high temperature gas-cooled reactor plant HTR-PM600," Energy, Elsevier, vol. 155(C), pages 971-991.
    6. Jiang, Di & Dong, Zhe, 2019. "Practical dynamic matrix control of MHTGR-based nuclear steam supply systems," Energy, Elsevier, vol. 185(C), pages 695-707.
    7. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    8. Srikanth Reddy & Lokesh Panwar & Bijaya Ketan Panigrahi & Rajesh Kumar & Lalit Goel & Ameena Saad Al-Sumaiti, 2020. "A profit-based self-scheduling framework for generation company energy and ancillary service participation in multi-constrained environment with renewable energy penetration," Energy & Environment, , vol. 31(4), pages 549-569, June.
    9. Crampes, Claude & Renault, Jérôme, 2018. "Supply flexibility in electricity markets," TSE Working Papers 18-964, Toulouse School of Economics (TSE).
    10. Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
    11. Lykidi, Maria & Gourdel, Pascal, 2017. "Optimal management of flexible nuclear power plants in a decarbonising competitive electricity market: The French case," Energy, Elsevier, vol. 132(C), pages 171-185.
    12. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    13. Chen, Yingwen & Chen, Liuliu & Li, Peiwen & Xu, Yuan & Fan, Mengjie & Zhu, Shemin & Shen, Shubao, 2016. "Enhanced performance of microbial fuel cells by using MnO2/Halloysite nanotubes to modify carbon cloth anodes," Energy, Elsevier, vol. 109(C), pages 620-628.
    14. Crampes, Claude & Renault, Jérôme, 2019. "How many markets for wholesale electricity when supply ispartially flexible?," Energy Economics, Elsevier, vol. 81(C), pages 465-478.
    15. Scharff, Richard & Amelin, Mikael, 2016. "Trading behaviour on the continuous intraday market Elbas," Energy Policy, Elsevier, vol. 88(C), pages 544-557.
    16. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    17. Zhe Dong & Miao Liu & Di Jiang & Xiaojin Huang & Yajun Zhang & Zuoyi Zhang, 2018. "Automatic Generation Control of Nuclear Heating Reactor Power Plants," Energies, MDPI, vol. 11(10), pages 1-18, October.
    18. Wang, Qiang & Li, Rongrong & He, Gang, 2018. "Research status of nuclear power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 90-96.
    19. Carless, Travis S. & Talabi, Sola M. & Fischbeck, Paul S., 2019. "Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential," Energy, Elsevier, vol. 167(C), pages 740-756.
    20. Alonso, Gustavo & Bilbao, Sama & Valle, Edmundo del, 2016. "Economic competitiveness of small modular reactors versus coal and combined cycle plants," Energy, Elsevier, vol. 116(P1), pages 867-879.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:53-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.