IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v150y2021ics1364032121006924.html
   My bibliography  Save this article

State-of-charge estimation and remaining useful life prediction of supercapacitors

Author

Listed:
  • Liu, Chunli
  • Li, Qiang
  • Wang, Kai

Abstract

As a new type of energy storage device, supercapacitors are widely applied in various fields owing to their irreplaceable extraordinary characteristics. The remaining useful life represents the safe service range of a supercapacitor. Precise monitoring of its value can ensure timely replacement before reaching the service limit. An accurate state-of-charge estimation can ensure that the supercapacitor works in a safe area. Superior precision ensures that the safe area is more explicit. Thus, the supercapacitor can exercise maximum effectiveness without damaging the device. Hence, this paper reviews the above sections. The remaining useful life prediction and state-of-charge estimation of supercapacitors are reviewed based on the model and data. The methods of different innovation points are enumerated, the disparate evaluation frameworks are compared, and their merits and demerits are generalized and reviewed. In the research field, while studying the remaining useful life of supercapacitors based on data, the application of artificial neural networks is emphasized. Hence, this study focuses on reviewing the relevant content for this approach. Finally, the challenges and prospects for the prediction of the above studies are briefly described.

Suggested Citation

  • Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121006924
    DOI: 10.1016/j.rser.2021.111408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Fei & Hu, Xiaosong & Hu, Lin & Hu, Fengling & Li, Yang & Zhang, Lei, 2019. "Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 102-113.
    2. Muzaffar, Aqib & Ahamed, M. Basheer & Deshmukh, Kalim & Thirumalai, Jagannathan, 2019. "A review on recent advances in hybrid supercapacitors: Design, fabrication and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 123-145.
    3. Shyh-Chin Huang & Kuo-Hsin Tseng & Jin-Wei Liang & Chung-Liang Chang & Michael G. Pecht, 2017. "An Online SOC and SOH Estimation Model for Lithium-Ion Batteries," Energies, MDPI, vol. 10(4), pages 1-18, April.
    4. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Wang, Yujie & Liu, Chang & Pan, Rui & Chen, Zonghai, 2017. "Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator," Energy, Elsevier, vol. 121(C), pages 739-750.
    6. Wei, Zhongbao & Zhao, Difan & He, Hongwen & Cao, Wanke & Dong, Guangzhong, 2020. "A noise-tolerant model parameterization method for lithium-ion battery management system," Applied Energy, Elsevier, vol. 268(C).
    7. Kai Wang & Chunli Liu & Jianrui Sun & Kun Zhao & Licheng Wang & Jinyan Song & Chongxiong Duan & Liwei Li & Dan Selistean, 2021. "State of Charge Estimation of Composite Energy Storage Systems with Supercapacitors and Lithium Batteries," Complexity, Hindawi, vol. 2021, pages 1-15, February.
    8. Zhou, Yanting & Wang, Yanan & Wang, Kai & Kang, Le & Peng, Fei & Wang, Licheng & Pang, Jinbo, 2020. "Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors," Applied Energy, Elsevier, vol. 260(C).
    9. Wang, Kai & Li, Liwei & Zhang, Tiezhu & Liu, Zaifei, 2014. "Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability," Energy, Elsevier, vol. 70(C), pages 612-617.
    10. Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
    11. Kai Wang & Wanli Wang & Licheng Wang & Liwei Li, 2020. "An Improved SOC Control Strategy for Electric Vehicle Hybrid Energy Storage Systems," Energies, MDPI, vol. 13(20), pages 1-13, October.
    12. Cadini, F. & Sbarufatti, C. & Cancelliere, F. & Giglio, M., 2019. "State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters," Applied Energy, Elsevier, vol. 235(C), pages 661-672.
    13. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    14. Sarasketa-Zabala, E. & Martinez-Laserna, E. & Berecibar, M. & Gandiaga, I. & Rodriguez-Martinez, L.M. & Villarreal, I., 2016. "Realistic lifetime prediction approach for Li-ion batteries," Applied Energy, Elsevier, vol. 162(C), pages 839-852.
    15. Zhang, Shuo & Hu, Xiaosong & Xie, Shaobo & Song, Ziyou & Hu, Lin & Hou, Cong, 2019. "Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 256(C).
    16. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
    17. Yu Hua & Na Wang & Keyou Zhao, 2021. "Simultaneous Unknown Input and State Estimation for the Linear System with a Rank-Deficient Distribution Matrix," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, January.
    18. Lei Zhang & Zhenpo Wang & Fengchun Sun & David G. Dorrell, 2014. "Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter," Energies, MDPI, vol. 7(5), pages 1-14, May.
    19. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Sun, Fengchun & Dorrell, David G., 2018. "A review of supercapacitor modeling, estimation, and applications: A control/management perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1868-1878.
    20. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    21. Faraji, Soheila & Ani, Farid Nasir, 2015. "The development supercapacitor from activated carbon by electroless plating—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 823-834.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Jianhui & Gu, Yujiong & Wang, Zijie & Zhao, Ziliang & Zhu, Ping, 2024. "Operational characteristics of an integrated island energy system based on multi-energy complementarity," Renewable Energy, Elsevier, vol. 230(C).
    2. Ning Ma & Huaixian Yin & Kai Wang, 2023. "Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on Improved Long Short-Term Memory," Energies, MDPI, vol. 16(14), pages 1-14, July.
    3. Zhang, Huixin & Xi, Xiaopeng & Pan, Rong, 2023. "A two-stage data-driven approach to remaining useful life prediction via long short-term memory networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Dimitrios Kontogiannis & Ioannis P. Panapakidis & Lefteri H. Tsoukalas, 2022. "Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting," Energies, MDPI, vol. 15(4), pages 1-14, February.
    5. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. He, Lin & Hu, Xingwen & Yin, Guangwei & Shao, Xingguo & Liu, Jichao & Shi, Qin, 2023. "A voltage dynamics model of lithium-ion battery for state-of-charge estimation by proportional-integral observer," Applied Energy, Elsevier, vol. 351(C).
    7. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    8. Chiara Dall’Armi & Davide Pivetta & Rodolfo Taccani, 2023. "Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects," Energies, MDPI, vol. 16(4), pages 1-34, February.
    9. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
    10. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    11. Dong, Ao & Ma, Ruifei & Deng, Yelin, 2023. "Optimization on charging of the direct hybrid lithium-ion battery and supercapacitor for high power application through resistance balancing," Energy, Elsevier, vol. 273(C).
    12. He, Lin & Hu, Xingwen & Yin, Guangwei & Wang, Guoqiang & Shao, Xingguo & Liu, Jichao, 2024. "A current dynamics model and proportional–integral observer for state-of-charge estimation of lithium-ion battery," Energy, Elsevier, vol. 288(C).
    13. Zhou, Yanting & Ma, Zhongjing & Zhang, Jinhui & Zou, Suli, 2022. "Data-driven stochastic energy management of multi energy system using deep reinforcement learning," Energy, Elsevier, vol. 261(PA).
    14. Smolenski, Robert & Szczesniak, Pawel & Drozdz, Wojciech & Kasperski, Lukasz, 2022. "Advanced metering infrastructure and energy storage for location and mitigation of power quality disturbances in the utility grid with high penetration of renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Yue, Tian & Shen, Boxiong & Gao, Pei, 2022. "Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    4. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    5. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    6. Wang, Bin & Wang, Chaohui & Wang, Zhiyu & Ni, Siliang & Yang, Yixin & Tian, Pengyu, 2023. "Adaptive state of energy evaluation for supercapacitor in emergency power system of more-electric aircraft," Energy, Elsevier, vol. 263(PA).
    7. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Jiang, Bo & Tao, Siyi & Wang, Xueyuan & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique," Energy, Elsevier, vol. 278(PA).
    9. Tian, Jiaqiang & Wang, Yujie & Liu, Chang & Chen, Zonghai, 2020. "Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles," Energy, Elsevier, vol. 194(C).
    10. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    11. Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
    12. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    13. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    14. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    15. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    16. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    18. Zhang, Shuzhi & Zhang, Chen & Jiang, Shiyong & Zhang, Xiongwen, 2022. "A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation," Energy, Elsevier, vol. 246(C).
    19. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Liu, Guoan & Xu, Cheng & Li, Haomiao & Jiang, Kai & Wang, Kangli, 2019. "State of charge and online model parameters co-estimation for liquid metal batteries," Applied Energy, Elsevier, vol. 250(C), pages 677-684.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121006924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.