State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121917
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Feng, Fei & Hu, Xiaosong & Hu, Lin & Hu, Fengling & Li, Yang & Zhang, Lei, 2019. "Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 102-113.
- Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
- Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
- Linghu, Jinqing & Kang, Longyun & Liu, Ming & Luo, Xuan & Feng, Yuanbin & Lu, Chusheng, 2019. "Estimation for state-of-charge of lithium-ion battery based on an adaptive high-degree cubature Kalman filter," Energy, Elsevier, vol. 189(C).
- Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
- Li, Xiaoyu & Huang, Zhijia & Tian, Jindong & Tian, Yong, 2021. "State-of-charge estimation tolerant of battery aging based on a physics-based model and an adaptive cubature Kalman filter," Energy, Elsevier, vol. 220(C).
- Lin, Cheng & Mu, Hao & Xiong, Rui & Shen, Weixiang, 2016. "A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm," Applied Energy, Elsevier, vol. 166(C), pages 76-83.
- Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
- Bi, Yalan & Choe, Song-Yul, 2020. "An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O2/Carbon battery using a reduced-order electrochemical model," Applied Energy, Elsevier, vol. 258(C).
- Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
- Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
- Tian, Jinpeng & Xiong, Rui & Shen, Weixiang & Lu, Jiahuan, 2021. "State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach," Applied Energy, Elsevier, vol. 291(C).
- Ning, Bo & Cao, Binggang & Wang, Bin & Zou, Zhongyue, 2018. "Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online," Energy, Elsevier, vol. 153(C), pages 732-742.
- Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
- Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
- Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Zhibing Zeng & Jindong Tian & Dong Li & Yong Tian, 2018. "An Online State of Charge Estimation Algorithm for Lithium-Ion Batteries Using an Improved Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-16, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
- Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
- Takyi-Aninakwa, Paul & Wang, Shunli & Liu, Guangchen & Bage, Alhamdu Nuhu & Bobobee, Etse Dablu & Appiah, Emmanuel & Huang, Qi, 2024. "Enhanced extended-input LSTM with an adaptive singular value decomposition UKF for LIB SOC estimation using full-cycle current rate and temperature data," Applied Energy, Elsevier, vol. 363(C).
- Li, Kangqun & Zhou, Fei & Chen, Xing & Yang, Wen & Shen, Junjie & Song, Zebin, 2023. "State-of-charge estimation combination algorithm for lithium-ion batteries with Frobenius-norm-based QR decomposition modified adaptive cubature Kalman filter and H-infinity filter based on electro-th," Energy, Elsevier, vol. 263(PC).
- Wu, Chunling & Hu, Wenbo & Meng, Jinhao & Xu, Xianfeng & Huang, Xinrong & Cai, Lei, 2023. "State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment," Energy, Elsevier, vol. 274(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
- Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
- Wu, Chunling & Hu, Wenbo & Meng, Jinhao & Xu, Xianfeng & Huang, Xinrong & Cai, Lei, 2023. "State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment," Energy, Elsevier, vol. 274(C).
- Li, Xiaoyu & Huang, Zhijia & Tian, Jindong & Tian, Yong, 2021. "State-of-charge estimation tolerant of battery aging based on a physics-based model and an adaptive cubature Kalman filter," Energy, Elsevier, vol. 220(C).
- Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
- Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
- Jiang, Bo & Tao, Siyi & Wang, Xueyuan & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique," Energy, Elsevier, vol. 278(PA).
- Li, Kangqun & Zhou, Fei & Chen, Xing & Yang, Wen & Shen, Junjie & Song, Zebin, 2023. "State-of-charge estimation combination algorithm for lithium-ion batteries with Frobenius-norm-based QR decomposition modified adaptive cubature Kalman filter and H-infinity filter based on electro-th," Energy, Elsevier, vol. 263(PC).
- Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios," Energy, Elsevier, vol. 263(PB).
- Jing Hou & He He & Yan Yang & Tian Gao & Yifan Zhang, 2019. "A Variational Bayesian and Huber-Based Robust Square Root Cubature Kalman Filter for Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(9), pages 1-23, May.
- Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
- Yu, Hanqing & Zhang, Lisheng & Wang, Wentao & Li, Shen & Chen, Siyan & Yang, Shichun & Li, Junfu & Liu, Xinhua, 2023. "State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries," Energy, Elsevier, vol. 278(C).
- Xu, Cheng & Zhang, E & Jiang, Kai & Wang, Kangli, 2022. "Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery," Applied Energy, Elsevier, vol. 327(C).
- Zafar, Muhammad Hamza & Mansoor, Majad & Abou Houran, Mohamad & Khan, Noman Mujeeb & Khan, Kamran & Raza Moosavi, Syed Kumayl & Sanfilippo, Filippo, 2023. "Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles," Energy, Elsevier, vol. 282(C).
- Kuo Yang & Yugui Tang & Zhen Zhang, 2021. "Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Fan, Xinyuan & Zhang, Weige & Zhang, Caiping & Chen, Anci & An, Fulai, 2022. "SOC estimation of Li-ion battery using convolutional neural network with U-Net architecture," Energy, Elsevier, vol. 256(C).
- Mengying Chen & Fengling Han & Long Shi & Yong Feng & Chen Xue & Weijie Gao & Jinzheng Xu, 2022. "Sliding Mode Observer for State-of-Charge Estimation Using Hysteresis-Based Li-Ion Battery Model," Energies, MDPI, vol. 15(7), pages 1-14, April.
- Ni, Zichuan & Xiu, Xianchao & Yang, Ying, 2022. "Towards efficient state of charge estimation of lithium-ion batteries using canonical correlation analysis," Energy, Elsevier, vol. 254(PC).
- Wang, Chao & Zhang, Xin & Yun, Xiang & Meng, Xiangfei & Fan, Xingming, 2023. "Robust state-of-charge estimation method for lithium-ion batteries based on the fusion of time series relevance vector machine and filter algorithm," Energy, Elsevier, vol. 285(C).
More about this item
Keywords
State of charge; Lithium-ion batteries; Non-positive definite matrix; Cubature Kalman filter; Filter divergence; Matrix decomposition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221021654. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.