IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0306165.html
   My bibliography  Save this article

State of energy estimation of lithium-ion battery based on long short-term memory optimization Adaptive Cubature Kalman filter

Author

Listed:
  • Enguang Hou
  • Heyan Song
  • Zhen Wang
  • Jingshu Zhu
  • Jiarui Tang
  • Gang Shen
  • Jiangang Wang

Abstract

State of energy (SOE) is an important parameter to ensure the safety and reliability of lithium-ion battery (LIB) system. The safety of LIBs, the development of artificial intelligence, and the increase in computing power have provided possibilities for big data computing. This article studies SOE estimation problem of LIBs, aiming to improve the accuracy and adaptability of the estimation. Firstly, in the SOE estimation process, adaptive correction is performed by iteratively updating the observation noise equation and process noise equation of the Adaptive Cubature Kalman Filter (ACKF) to enhance the adaptive capability. Meanwhile, the adoption of high-order equivalent models further improves the accuracy and adaptive ability of SOE estimation. Secondly, Long Short-term Memory (LSTM) is introduced to optimize Ohmic internal resistance (OIR) and actual energy (AE), further improving the accuracy of SOE estimation. Once again, in the process of OIR and AE estimation, the iterative updating of the observation noise equation and process noise equation of ACKF were also adopted to perform adaptive correction and enhance the adaptive ability. Finally, this article establishes a SOE estimation method based on LSTM optimized ACKF. Validate the LSTM optimized ACKF method through simulation experiments and compare it with individual ACKF methods. The results show that the ACKF estimation method based on LSTM optimization has an SOE estimation error of less than 0.90% for LIB, regardless of the SOE at 100%, 65%, and 30%, which is more accurate than the SOE estimation error of ACKF alone. It can be seen that this study has improved the accuracy and adaptability of LIB’s SOE estimation, providing more accurate data support for ensuring the safety and reliability of lithium batteries.

Suggested Citation

  • Enguang Hou & Heyan Song & Zhen Wang & Jingshu Zhu & Jiarui Tang & Gang Shen & Jiangang Wang, 2024. "State of energy estimation of lithium-ion battery based on long short-term memory optimization Adaptive Cubature Kalman filter," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-19, July.
  • Handle: RePEc:plo:pone00:0306165
    DOI: 10.1371/journal.pone.0306165
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306165
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0306165&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0306165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    2. Ma, Wentao & Guo, Peng & Wang, Xiaofei & Zhang, Zhiyu & Peng, Siyuan & Chen, Badong, 2022. "Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion," Energy, Elsevier, vol. 260(C).
    3. Xin Qiao & Zhixue Wang & Enguang Hou & Guangmin Liu & Yinghao Cai, 2022. "Online Estimation of Open Circuit Voltage Based on Extended Kalman Filter with Self-Evaluation Criterion," Energies, MDPI, vol. 15(12), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Simin & Zhang, Daohan & Dai, Guohong & Wang, Lin & Jiang, Yuxia & Zhou, Feng, 2025. "State of charge estimation for LiFePO4 batteries joint by PID observer and improved EKF in various OCV ranges," Applied Energy, Elsevier, vol. 377(PA).
    2. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    3. Liu, Zheng & Zhao, Zhenhua & Qiu, Yuan & Jing, Benqin & Yang, Chunshan & Wu, Huifeng, 2023. "Enhanced state of charge estimation for Li-ion batteries through adaptive maximum correntropy Kalman filter with open circuit voltage correction," Energy, Elsevier, vol. 283(C).
    4. Yuanyuan Pan & Ke Xu & Ruiqiang Wang & Honghong Wang & Guodong Chen & Kai Wang, 2025. "Lithium-Ion Battery Condition Monitoring: A Frontier in Acoustic Sensing Technology," Energies, MDPI, vol. 18(5), pages 1-20, February.
    5. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    6. Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
    7. Wu, Chunling & Hu, Wenbo & Meng, Jinhao & Xu, Xianfeng & Huang, Xinrong & Cai, Lei, 2023. "State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment," Energy, Elsevier, vol. 274(C).
    8. Xin Zhang & Jiawei Hou & Zekun Wang & Yueqiu Jiang, 2022. "Joint SOH-SOC Estimation Model for Lithium-Ion Batteries Based on GWO-BP Neural Network," Energies, MDPI, vol. 16(1), pages 1-17, December.
    9. Xiong, Wei & Xie, Fang & Xu, Gang & Li, Yumei & Li, Ben & Mo, Yimin & Ma, Fei & Wei, Keke, 2023. "Co-estimation of the model parameter and state of charge for retired lithium-ion batteries over a wide temperature range and battery degradation scope," Renewable Energy, Elsevier, vol. 218(C).
    10. Zeng, Xiaoyong & Sun, Yaoke & Xia, Xiangyang & Chen, Laien, 2025. "A framework for joint SOC and SOH estimation of lithium-ion battery: Eliminating the dependency on initial states," Applied Energy, Elsevier, vol. 377(PD).
    11. Li, Kangqun & Zhou, Fei & Chen, Xing & Yang, Wen & Shen, Junjie & Song, Zebin, 2023. "State-of-charge estimation combination algorithm for lithium-ion batteries with Frobenius-norm-based QR decomposition modified adaptive cubature Kalman filter and H-infinity filter based on electro-th," Energy, Elsevier, vol. 263(PC).
    12. Xiong, Rui & Duan, Yanzhou & Zhang, Kaixuan & Lin, Da & Tian, Jinpeng & Chen, Cheng, 2023. "State-of-charge estimation for onboard LiFePO4 batteries with adaptive state update in specific open-circuit-voltage ranges," Applied Energy, Elsevier, vol. 349(C).
    13. Wang, Limei & Jin, Mengjie & Cai, Yingfeng & Lian, Yubo & Zhao, Xiuliang & Wang, Ruochen & Qiao, Sibing & Chen, Long & Yan, Xueqing, 2023. "Construction of electrochemical model for high C-rate conditions in lithium-ion battery based on experimental analogy method," Energy, Elsevier, vol. 279(C).
    14. Takyi-Aninakwa, Paul & Wang, Shunli & Liu, Guangchen & Bage, Alhamdu Nuhu & Bobobee, Etse Dablu & Appiah, Emmanuel & Huang, Qi, 2024. "Enhanced extended-input LSTM with an adaptive singular value decomposition UKF for LIB SOC estimation using full-cycle current rate and temperature data," Applied Energy, Elsevier, vol. 363(C).
    15. Haiyang Zhang & Chenglin Wen, 2024. "A Higher-Order Extended Cubature Kalman Filter Method Using the Statistical Characteristics of the Rounding Error of the System Model," Mathematics, MDPI, vol. 12(8), pages 1-16, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0306165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.