IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i1p446-453.html
   My bibliography  Save this article

Solar stills: A review

Author

Listed:
  • Kaushal, Aayush
  • Varun

Abstract

The availability of drinking water is reducing day by day; where as the requirement of drinking water is increasing rapidly. To overcome this problem there is a need for some sustainable source for the water distillation (purification). Solar still is a useful device that can be used for the distilling of brackish water for the drinking purposes. In this article a review has been done on different types of solar still.

Suggested Citation

  • Kaushal, Aayush & Varun, 2010. "Solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 446-453, January.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:1:p:446-453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00167-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukla, S.K. & Sorayan, V.P.S., 2005. "Thermal modeling of solar stills: an experimental validation," Renewable Energy, Elsevier, vol. 30(5), pages 683-699.
    2. Abu-Hijleh, Bassam A/K & Mousa, Hasan A., 1997. "Water film cooling over the glass cover of a solar still including evaporation effects," Energy, Elsevier, vol. 22(1), pages 43-48.
    3. Al-Karaghouli, A.A. & Minasian, A.N., 1995. "A floating-wick type solar still," Renewable Energy, Elsevier, vol. 6(1), pages 77-79.
    4. Singh, H.N. & Tiwari, G.N., 2005. "Evaluation of cloudiness/haziness factor for composite climate," Energy, Elsevier, vol. 30(9), pages 1589-1601.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jahangiri Mamouri, S. & Gholami Derami, H. & Ghiasi, M. & Shafii, M.B. & Shiee, Z., 2014. "Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still," Energy, Elsevier, vol. 75(C), pages 501-507.
    2. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    3. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    4. Omara, Z.M. & Kabeel, A.E. & Abdullah, A.S., 2017. "A review of solar still performance with reflectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 638-649.
    5. Yadav, Saurabh & Sudhakar, K., 2015. "Different domestic designs of solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 718-731.
    6. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.
    7. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    8. Rahbar, N. & Esfahani, J.A., 2013. "Productivity estimation of a single-slope solar still: Theoretical and numerical analysis," Energy, Elsevier, vol. 49(C), pages 289-297.
    9. Hassan, Hamdy & Ahmed, M. Salem & Fathy, Mohamed, 2019. "Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC)," Renewable Energy, Elsevier, vol. 135(C), pages 136-147.
    10. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    11. Muftah, Ali. F. & Alghoul, M.A. & Fudholi, Ahmad & Abdul-Majeed, M.M. & Sopian, K., 2014. "Factors affecting basin type solar still productivity: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 430-447.
    12. El-Sebaii, A.A., 2011. "On effect of wind speed on passive solar still performance based on inner/outer surface temperatures of the glass cover," Energy, Elsevier, vol. 36(8), pages 4943-4949.
    13. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    14. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    16. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    17. Bhardwaj, R. & ten Kortenaar, M.V. & Mudde, R.F., 2015. "Maximized production of water by increasing area of condensation surface for solar distillation," Applied Energy, Elsevier, vol. 154(C), pages 480-490.
    18. Muthu Manokar, A. & Kalidasa Murugavel, K. & Esakkimuthu, G., 2014. "Different parameters affecting the rate of evaporation and condensation on passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 309-322.
    19. Gakkhar, Nikhil & Soni, M.S. & Jakhar, Sanjeev, 2016. "Second law thermodynamic study of solar assisted distillation system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 519-535.
    20. Omara, Z.M. & Abdullah, A.S. & Kabeel, A.E. & Essa, F.A., 2017. "The cooling techniques of the solar stills' glass covers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 176-193.
    21. Ranjan, K.R. & Kaushik, S.C., 2013. "Energy, exergy and thermo-economic analysis of solar distillation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 709-723.
    22. Mohaisen, H.S. & Esfahani, J.A. & Ayani, M.B., 2021. "Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study," Renewable Energy, Elsevier, vol. 168(C), pages 170-180.
    23. Pugsley, Adrian & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn, 2016. "Global applicability of solar desalination," Renewable Energy, Elsevier, vol. 88(C), pages 200-219.
    24. Ladier, Anne-Laure & Alpan, Gülgün, 2016. "Cross-docking operations: Current research versus industry practice," Omega, Elsevier, vol. 62(C), pages 145-162.
    25. Sivakumar, V. & Ganapathy Sundaram, E., 2013. "Improvement techniques of solar still efficiency: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 246-264.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    2. Manikandan, V. & Shanmugasundaram, K. & Shanmugan, S. & Janarthanan, B. & Chandrasekaran, J., 2013. "Wick type solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 322-335.
    3. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    4. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    5. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    6. Chel, Arvind & Tiwari, G.N., 2009. "Thermal performance and embodied energy analysis of a passive house - Case study of vault roof mud-house in India," Applied Energy, Elsevier, vol. 86(10), pages 1956-1969, October.
    7. Singh, D.B., 2018. "Energy metrics analysis of N identical evacuated tubular collectors integrated single slope solar still," Energy, Elsevier, vol. 148(C), pages 546-560.
    8. Omara, Z.M. & Abdullah, A.S. & Kabeel, A.E. & Essa, F.A., 2017. "The cooling techniques of the solar stills' glass covers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 176-193.
    9. Elfasakhany, Ashraf, 2016. "Performance assessment and productivity of a simple-type solar still integrated with nanocomposite energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 399-407.
    10. Ahmed, Mohamed M.Z. & Alshammari, Fuhaid & Abdullah, A.S. & Elashmawy, Mohamed, 2021. "Experimental investigation of a low cost inclined wick solar still with forced continuous flow," Renewable Energy, Elsevier, vol. 179(C), pages 319-326.
    11. Kalidasa Murugavel, K. & Srithar, K., 2011. "Performance study on basin type double slope solar still with different wick materials and minimum mass of water," Renewable Energy, Elsevier, vol. 36(2), pages 612-620.
    12. Torchia-Núñez, J.C. & Porta-Gándara, M.A. & Cervantes-de Gortari, J.G., 2008. "Exergy analysis of a passive solar still," Renewable Energy, Elsevier, vol. 33(4), pages 608-616.
    13. Modi, Kalpesh V. & Nayi, Kuldeep H., 2020. "Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still," Renewable Energy, Elsevier, vol. 153(C), pages 1307-1319.
    14. Velmurugan, V. & Srithar, K., 2011. "Performance analysis of solar stills based on various factors affecting the productivity--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1294-1304, February.
    15. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    16. Suha A. Mohammed & Ali Basem & Zakaria M. Omara & Wissam H. Alawee & Hayder A. Dhahad & Fadl A. Essa & Abdekader S. Abdullah & Hasan Sh. Majdi & Iqbal Alshalal & Wan Nor Roslam Wan Isahak & Ahmed A. A, 2022. "Pyramidal Solar Stills via Hollow Cylindrical Perforated Fins, Inclined Rectangular Perforated Fins, and Nanocomposites: An Experimental Investigation," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    17. Djamal Eddine Benhadji Serradj & Timothy Anderson & Roy Nates, 2022. "The Effect of Geometry on the Yield of Fresh Water from Single Slope Solar Stills," Energies, MDPI, vol. 15(19), pages 1-18, October.
    18. Valsaraj, P., 2002. "An experimental study on solar distillation in a single slope basin still by surface heating the water mass," Renewable Energy, Elsevier, vol. 25(4), pages 607-612.
    19. Mostafa AbdEl-Rady Abu-Zeid & Yasser Elhenawy & Monica Toderaș & Mohamed Bassyouni & Thokozani Majozi & Osama A. Al-Qabandi & Sameh Said Kishk, 2024. "Performance Enhancement of Solar Still Unit Using v-Corrugated Basin, Internal Reflecting Mirror, Flat-Plate Solar Collector and Nanofluids," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    20. Nasr, Abdelaziz & Debbissi Hfaiedh, Chokri & Ben Nasrallah, Sassi, 2011. "Numerical study of evaporation by mixed convection of a binary liquid film," Energy, Elsevier, vol. 36(5), pages 2316-2327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:1:p:446-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.