IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i4p608-616.html
   My bibliography  Save this article

Exergy analysis of a passive solar still

Author

Listed:
  • Torchia-Núñez, J.C.
  • Porta-Gándara, M.A.
  • Cervantes-de Gortari, J.G.

Abstract

This paper presents a steady-state and transient theoretical exergy analysis of a solar still, focused on the exergy destruction in the components of the still: collector plate, brine and glass cover. The analytical approach states an energy balance for each component resulting in three coupled equations where three parameters—solar irradiance, ambient temperature and insulation thickness—are studied. The energy balances are solved to find temperatures of each component; these temperatures are used to compute energy and exergy flows. Results in the steady-state regime show that the irreversibilities produced in the collector account for the largest exergy destruction, up to 615W/m2 for a 935W/m2 solar exergy input, whereas irreversibility rates in the brine and in the glass cover can be neglected. For the same exergy input a collector, brine and solar still exergy efficiency of 12.9%, 6% and 5% are obtained, respectively. The most influential parameter is solar irradiance. During the transient regime, irreversibility rates and still temperatures find a maximum 6h after dawn when solar irradiance has a maximum value. However, maximum exergy brine efficiency, close to 93%, is found once Tcol

Suggested Citation

  • Torchia-Núñez, J.C. & Porta-Gándara, M.A. & Cervantes-de Gortari, J.G., 2008. "Exergy analysis of a passive solar still," Renewable Energy, Elsevier, vol. 33(4), pages 608-616.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:4:p:608-616
    DOI: 10.1016/j.renene.2007.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107001139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukla, S.K. & Sorayan, V.P.S., 2005. "Thermal modeling of solar stills: an experimental validation," Renewable Energy, Elsevier, vol. 30(5), pages 683-699.
    2. Torres R, E & Picon Nuñez, M & Cervantes de G, J, 1998. "Exergy analysis and optimization of a solar-assisted heat pump," Energy, Elsevier, vol. 23(4), pages 337-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeyaraj, Thavamani & Kumar, Pankaj, 2023. "Theoretical and experimental investigation of double slope solar still with channel integration: Energy, exergy and water quality analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    3. Fatih Selimefendigil & Ceylin Şirin & Hakan F. Öztop, 2022. "Experimental Performance Analysis of a Solar Desalination System Modified with Natural Dolomite Powder Integrated Latent Heat Thermal Storage Unit," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    4. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
    5. Gaur, M.K. & Tiwari, G.N., 2010. "Optimization of number of collectors for integrated PV/T hybrid active solar still," Applied Energy, Elsevier, vol. 87(5), pages 1763-1772, May.
    6. Pons, Michel, 2012. "Exergy analysis of solar collectors, from incident radiation to dissipation," Renewable Energy, Elsevier, vol. 47(C), pages 194-202.
    7. Maddah, Hisham A. & Bassyouni, M. & Abdel-Aziz, M.H. & Zoromba, M. Sh & Al-Hossainy, A.F., 2020. "Performance estimation of a mini-passive solar still via machine learning," Renewable Energy, Elsevier, vol. 162(C), pages 489-503.
    8. Kianifar, Ali & Zeinali Heris, Saeed & Mahian, Omid, 2012. "Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases," Energy, Elsevier, vol. 38(1), pages 31-36.
    9. Hassan, Hamdy, 2020. "Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity," Renewable Energy, Elsevier, vol. 148(C), pages 437-450.
    10. Nadal-Bach, Joel & Bruno, Joan Carles & Farnós, Joan & Rovira, Miquel, 2021. "Solar stills and evaporators for the treatment of agro-industrial liquid wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Sangi, Roozbeh & Müller, Dirk, 2018. "Implementation of a solution to the problem of reference environment in the exergy evaluation of building energy systems," Energy, Elsevier, vol. 149(C), pages 830-836.
    12. Ranjan, K.R. & Kaushik, S.C., 2013. "Energy, exergy and thermo-economic analysis of solar distillation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 709-723.
    13. Macmanus Chinenye Ndukwu & Lyes Bennamoun & Merlin Simo-Tagne, 2021. "Reviewing the Exergy Analysis of Solar Thermal Systems Integrated with Phase Change Materials," Energies, MDPI, vol. 14(3), pages 1-26, January.
    14. Sangi, Roozbeh & Müller, Dirk, 2019. "Application of the second law of thermodynamics to control: A review," Energy, Elsevier, vol. 174(C), pages 938-953.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Honghyun, 2015. "Comparative study on the performance and exergy efficiency of a solar hybrid heat pump using R22 and R744," Energy, Elsevier, vol. 93(P2), pages 1267-1276.
    2. Luminosu, I. & Fara, L., 2005. "Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation," Energy, Elsevier, vol. 30(5), pages 731-747.
    3. Kaushal, Aayush & Varun, 2010. "Solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 446-453, January.
    4. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2017. "Thermal performance of a solar assisted horizontal ground heat exchanger," Energy, Elsevier, vol. 140(P1), pages 1216-1227.
    5. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    6. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    7. Shamshirgaran, Seyed Reza & Khalaji Assadi, Morteza & Badescu, Viorel & Al-Kayiem, Hussain H., 2018. "Upper limits for the work extraction by nanofluid-filled selective flat-plate solar collectors," Energy, Elsevier, vol. 160(C), pages 875-885.
    8. Elfasakhany, Ashraf, 2016. "Performance assessment and productivity of a simple-type solar still integrated with nanocomposite energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 399-407.
    9. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    10. Ozgener, Onder & Hepbasli, Arif, 2007. "A review on the energy and exergy analysis of solar assisted heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 482-496, April.
    11. Velmurugan, V. & Srithar, K., 2011. "Performance analysis of solar stills based on various factors affecting the productivity--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1294-1304, February.
    12. Suha A. Mohammed & Ali Basem & Zakaria M. Omara & Wissam H. Alawee & Hayder A. Dhahad & Fadl A. Essa & Abdekader S. Abdullah & Hasan Sh. Majdi & Iqbal Alshalal & Wan Nor Roslam Wan Isahak & Ahmed A. A, 2022. "Pyramidal Solar Stills via Hollow Cylindrical Perforated Fins, Inclined Rectangular Perforated Fins, and Nanocomposites: An Experimental Investigation," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    13. Omojaro, Peter & Breitkopf, Cornelia, 2013. "Direct expansion solar assisted heat pumps: A review of applications and recent research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 33-45.
    14. Zhiyong Yang & Yiping Wang & Li Zhu, 2011. "Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors," Energies, MDPI, vol. 4(3), pages 1-13, March.
    15. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    16. Djamal Eddine Benhadji Serradj & Timothy Anderson & Roy Nates, 2022. "The Effect of Geometry on the Yield of Fresh Water from Single Slope Solar Stills," Energies, MDPI, vol. 15(19), pages 1-18, October.
    17. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate," Energy, Elsevier, vol. 37(1), pages 749-758.
    18. Mostafa AbdEl-Rady Abu-Zeid & Yasser Elhenawy & Monica Toderaș & Mohamed Bassyouni & Thokozani Majozi & Osama A. Al-Qabandi & Sameh Said Kishk, 2024. "Performance Enhancement of Solar Still Unit Using v-Corrugated Basin, Internal Reflecting Mirror, Flat-Plate Solar Collector and Nanofluids," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    19. Ranjan, K.R. & Kaushik, S.C., 2013. "Energy, exergy and thermo-economic analysis of solar distillation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 709-723.
    20. Kara, Ozer & Ulgen, Koray & Hepbasli, Arif, 2008. "Exergetic assessment of direct-expansion solar-assisted heat pump systems: Review and modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1383-1401, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:4:p:608-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.