IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v94y2012icp232-243.html
   My bibliography  Save this article

Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector

Author

Listed:
  • Lamnatou, Chr.
  • Papanicolaou, E.
  • Belessiotis, V.
  • Kyriakis, N.

Abstract

The present work presents a thermodynamic performance analysis of a solar dryer with an evacuated-tube collector. Drying experiments for apples, carrots and apricots were conducted, after a preliminary stage of the investigation which included measurements for the determination of the collector efficiency. These results showed that the warm outlet air of the collector attains temperature levels suitable for drying of agricultural products without the need of preheating. Thus, the present collector was used as the heat source for a drying chamber in the frame of the development of a novel, convective, indirect solar dryer; given the fact that in the literature there are only a few studies about this type of collectors in conjunction with solar drying applications. Thin-layer drying models were fitted to the experimental drying curves, including the recent model of Diamante et al. [18] which showed good correlation coefficients for all the tested products. Drying parameters such as moisture ratio and drying rates were calculated. Furthermore, an energetic/exergetic analysis of the dryer was also conducted and performance coefficients such as pick-up and exergy efficiencies, energy utilization ratio, exergy losses were determined for several configurations such as single and double-trays and several drying air velocities. On the other hand, an optimal collector surface area study was conducted, based on laws for minimum entropy generation. Design parameters such as optimum collector area were determined based on the minimum entropy generation number. The mass flow number, along with the maximum collector and fluid exit temperatures were studied in relation to the minimum entropy generation. The energy/exergy analysis proposed, provides a useful tool for the evaluation of this type of collectors regarding their effectiveness as part of a solar drying system. Moreover, the results of the present study showed that the proposed solar dryer has a capacity for drying larger quantities of the products than those considered (in the frame of the experimental study) given the high efficiency of the collector. In general, the proposed system provides an interesting option for the penetration of this type of collectors in large-scale applications in the agricultural and industrial sector.

Suggested Citation

  • Lamnatou, Chr. & Papanicolaou, E. & Belessiotis, V. & Kyriakis, N., 2012. "Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector," Applied Energy, Elsevier, vol. 94(C), pages 232-243.
  • Handle: RePEc:eee:appene:v:94:y:2012:i:c:p:232-243
    DOI: 10.1016/j.apenergy.2012.01.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.01.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    2. Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
    3. Rathore, N.S. & Panwar, N.L., 2010. "Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying," Applied Energy, Elsevier, vol. 87(8), pages 2764-2767, August.
    4. Lamnatou, Chr. & Papanicolaou, E. & Belessiotis, V. & Kyriakis, N., 2010. "Finite-volume modelling of heat and mass transfer during convective drying of porous bodies – Non-conjugate and conjugate formulations involving the aerodynamic effects," Renewable Energy, Elsevier, vol. 35(7), pages 1391-1402.
    5. Torres R, E & Picon Nuñez, M & Cervantes de G, J, 1998. "Exergy analysis and optimization of a solar-assisted heat pump," Energy, Elsevier, vol. 23(4), pages 337-344.
    6. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
    7. Torres-Reyes, E. & Navarrete-Gonzalez, J.J. & Ibarra-Salazar, B.A., 2002. "Thermodynamic method for designing dryers operated by flat-plate solar collectors," Renewable Energy, Elsevier, vol. 26(4), pages 649-660.
    8. Midilli, A. & Kucuk, H., 2003. "Energy and exergy analyses of solar drying process of pistachio," Energy, Elsevier, vol. 28(6), pages 539-556.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naik, B. Kiran & Bhowmik, Mrinal & Muthukumar, P., 2019. "Experimental investigation and numerical modelling on the performance assessments of evacuated U – Tube solar collector systems," Renewable Energy, Elsevier, vol. 134(C), pages 1344-1361.
    2. Tiwari, Sumit & Tiwari, G.N., 2017. "Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector," Energy, Elsevier, vol. 128(C), pages 183-195.
    3. Baniasadi, Ehsan & Ranjbar, Saeed & Boostanipour, Omid, 2017. "Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage," Renewable Energy, Elsevier, vol. 112(C), pages 143-150.
    4. Hao, Wengang & Lu, Yifeng & Lai, Yanhua & Yu, Hongwen & Lyu, Mingxin, 2018. "Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products," Renewable Energy, Elsevier, vol. 127(C), pages 685-696.
    5. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    6. Wang, Tengyue & Zhao, Yaohua & Diao, Yanhua & Ma, Cheng & Zhang, Yubin & Lu, Xiaoshan, 2021. "Experimental investigation of a novel thermal storage solar air heater (TSSAH) based on flat micro-heat pipe arrays," Renewable Energy, Elsevier, vol. 173(C), pages 639-651.
    7. Malakar, Santanu & Arora, Vinkel Kumar & Nema, Prabhat K., 2021. "Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove," Renewable Energy, Elsevier, vol. 168(C), pages 568-580.
    8. Wang, Teng-yue & Zhao, Yao-hua & Diao, Yan-hua & Ren, Ru-yang & Wang, Ze-yu, 2019. "Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays," Energy, Elsevier, vol. 177(C), pages 16-28.
    9. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    10. Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Kalogirou, S.A. & Palombo, A., 2019. "Building façade integrated solar thermal collectors for air heating: experimentation, modelling and applications," Applied Energy, Elsevier, vol. 239(C), pages 658-679.
    11. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    12. Wang, Chengbing & Li, Wei & Li, Zhengtong & Fang, Baizeng, 2020. "Solar thermal harvesting based on self-doped nanocermet: Structural merits, design strategies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Tiwari, Sumit & Tiwari, G.N., 2016. "Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer," Energy, Elsevier, vol. 114(C), pages 155-164.
    14. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    15. Jamal-Abad, Milad Tajik & Saedodin, Seyfolah & Aminy, Mohammad, 2016. "Heat transfer in concentrated solar air-heaters filled with a porous medium with radiation effects: A perturbation solution," Renewable Energy, Elsevier, vol. 91(C), pages 147-154.
    16. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    17. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Singh, Manpreet, 2021. "A novel active-mode indirect solar dryer for agricultural products: Experimental evaluation and economic feasibility," Energy, Elsevier, vol. 222(C).
    18. Waseem Amjad & Muhammad Ali Raza & Furqan Asghar & Anjum Munir & Faisal Mahmood & Syed Nabeel Husnain & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator," Energies, MDPI, vol. 15(4), pages 1-15, February.
    19. Bardy, Erik & Hamdi, Merouane & Havet, Michel & Rouaud, Olivier, 2015. "Transient exergetic efficiency and moisture loss analysis of forced convection drying with and without electrohydrodynamic enhancement," Energy, Elsevier, vol. 89(C), pages 519-527.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    2. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "A review on energy and exergy analysis of solar dying systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2812-2819.
    3. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    4. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate," Energy, Elsevier, vol. 37(1), pages 749-758.
    5. Luminosu, I. & Fara, L., 2005. "Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation," Energy, Elsevier, vol. 30(5), pages 731-747.
    6. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
    7. Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
    8. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    9. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    10. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
    11. Tagnamas, Zakaria & Lamsyehe, Hamza & Moussaoui, Haytem & Bahammou, Younes & Kouhila, Mounir & Idlimam, Ali & Lamharrar, Abdelkader, 2021. "Energy and exergy analyses of carob pulp drying system based on a solar collector," Renewable Energy, Elsevier, vol. 163(C), pages 495-503.
    12. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    13. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    14. Akyuz, E. & Coskun, C. & Oktay, Z. & Dincer, I., 2012. "A novel approach for estimation of photovoltaic exergy efficiency," Energy, Elsevier, vol. 44(1), pages 1059-1066.
    15. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    16. Rismanchi, B. & Saidur, R. & BoroumandJazi, G. & Ahmed, S., 2012. "Energy, exergy and environmental analysis of cold thermal energy storage (CTES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5741-5746.
    17. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    18. Defraeye, Thijs, 2014. "Advanced computational modelling for drying processes – A review," Applied Energy, Elsevier, vol. 131(C), pages 323-344.
    19. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    20. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:94:y:2012:i:c:p:232-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.