IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v93y2016icp77-86.html
   My bibliography  Save this article

Drying of sweet basil with solar air collectors

Author

Listed:
  • Gulcimen, Fevzi
  • Karakaya, Hakan
  • Durmus, Aydın

Abstract

In this study, sweet basil was dried and its drying parameters were investigated experimentally and theoretically by using newly developed solar air collectors. Proper temperatures were chosen to dry sweet basil and experiments were carried out at different flow rates. At the end of drying experiments, it was determined that total mass of sweet basil decreased from 0.250 kg to 0.029 kg. In drying sweet basil, dimensionless moisture ratios were decreased rapidly to 300 min for 0.012 kg/s, 360 min for 0.026 kg/s, and 450 min for 0.033 kg/s. It was observed that the efficiency of collector was increased at the same rate with air flow changed between 29 and 63%. Among the models in the literature, Page Model was found to suit best for drying sweet basil. Furthermore, a novel mathematical model rendering more valid results for sweet basil and leafy products was developed.

Suggested Citation

  • Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
  • Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:77-86
    DOI: 10.1016/j.renene.2016.02.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
    2. Alta, Deniz & Bilgili, Emin & Ertekin, C. & Yaldiz, Osman, 2010. "Experimental investigation of three different solar air heaters: Energy and exergy analyses," Applied Energy, Elsevier, vol. 87(10), pages 2953-2973, October.
    3. Tunde-Akintunde, T.Y., 2011. "Mathematical modeling of sun and solar drying of chilli pepper," Renewable Energy, Elsevier, vol. 36(8), pages 2139-2145.
    4. Koua, Kamenan Blaise & Fassinou, Wanignon Ferdinand & Gbaha, Prosper & Toure, Siaka, 2009. "Mathematical modelling of the thin layer solar drying of banana, mango and cassava," Energy, Elsevier, vol. 34(10), pages 1594-1602.
    5. Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
    6. Kurtbas, İrfan & Durmus̨, Aydın, 2004. "Efficiency and exergy analysis of a new solar air heater," Renewable Energy, Elsevier, vol. 29(9), pages 1489-1501.
    7. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & El-Gohary, H.G., 2002. "Empirical correlations for drying kinetics of some fruits and vegetables," Energy, Elsevier, vol. 27(9), pages 845-859.
    8. Midilli, A. & Kucuk, H., 2003. "Energy and exergy analyses of solar drying process of pistachio," Energy, Elsevier, vol. 28(6), pages 539-556.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirzaei, Saeid & Ameri, Mehran & Ziaforoughi, Amin, 2021. "Energy-exergy analysis of an infrared dryer equipped with a photovoltaic-thermal collector in glazed and unglazed modes," Renewable Energy, Elsevier, vol. 169(C), pages 541-556.
    2. Amer, Baher M.A. & Gottschalk, Klaus & Hossain, M.A., 2018. "Integrated hybrid solar drying system and its drying kinetics of chamomile," Renewable Energy, Elsevier, vol. 121(C), pages 539-547.
    3. Kouhila, Mounir & Moussaoui, Haytem & Lamsyehe, Hamza & Tagnamas, Zakaria & Bahammou, Younes & Idlimam, Ali & Lamharrar, Abdelkader, 2020. "Drying characteristics and kinetics solar drying of Mediterranean mussel (mytilus galloprovincilis) type under forced convection," Renewable Energy, Elsevier, vol. 147(P1), pages 833-844.
    4. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    5. Hu, Jianjun & Liu, Kaitong & Guo, Meng & Zhang, Guangqiu & Chu, Zhongliang & Wang, Meida, 2019. "Performance improvement of baffle-type solar air collector based on first chamber narrowing," Renewable Energy, Elsevier, vol. 135(C), pages 701-710.
    6. Luis Olmos-Villalba & Bernardo Herrera & Anderson Gallego & Karen Cacua, 2019. "Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    7. Hao, Wengang & Lu, Yifeng & Lai, Yanhua & Yu, Hongwen & Lyu, Mingxin, 2018. "Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products," Renewable Energy, Elsevier, vol. 127(C), pages 685-696.
    8. Mghazli, Safa & Ouhammou, Mourad & Hidar, Nadia & Lahnine, Lamyae & Idlimam, Ali & Mahrouz, Mostafa, 2017. "Drying characteristics and kinetics solar drying of Moroccan rosemary leaves," Renewable Energy, Elsevier, vol. 108(C), pages 303-310.
    9. Hu, Jianjun & Guo, Meng & Guo, Jinyong & Zhang, Guangqiu & Zhang, Yuwen, 2020. "Numerical and experimental investigation of solar air collector with internal swirling flow," Renewable Energy, Elsevier, vol. 162(C), pages 2259-2271.
    10. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    11. Kuan, M. & Shakir, Ye. & Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2019. "Numerical simulation of a heat pump assisted solar dryer for continental climates," Renewable Energy, Elsevier, vol. 143(C), pages 214-225.
    12. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Kareem, M.W. & Habib, Khairul & Sopian, K. & Ruslan, M.H., 2017. "Multi-pass solar air heating collector system for drying of screw-pine leaf (Pandanus tectorius)," Renewable Energy, Elsevier, vol. 112(C), pages 413-424.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "A review on energy and exergy analysis of solar dying systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2812-2819.
    3. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
    4. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    5. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    6. Nazri, Nurul Syakirah & Fudholi, Ahmad & Mustafa, Wan & Yen, Chan Hoy & Mohammad, Masita & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2019. "Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 132-144.
    7. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    8. Dissa, A.O. & Bathiebo, D.J. & Desmorieux, H. & Coulibaly, O. & Koulidiati, J., 2011. "Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes," Energy, Elsevier, vol. 36(5), pages 2517-2527.
    9. Arun, K.R. & Kunal, G. & Srinivas, M. & Kumar, C.S. Sujith & Mohanraj, M. & Jayaraj, S., 2020. "Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage," Energy, Elsevier, vol. 192(C).
    10. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate," Energy, Elsevier, vol. 37(1), pages 749-758.
    11. Barati, E. & Esfahani, J.A., 2011. "Mathematical modeling of convective drying: Lumped temperature and spatially distributed moisture in slab," Energy, Elsevier, vol. 36(4), pages 2294-2301.
    12. Fuqiang Qiu & Baoguo Li & Taoping Xu & Dugui He, 2022. "Drying behavior and mathematical modeling of Tenebrio molitor using a closed system heat pump dryer [Evaluation of Tenebrio molitor larvae as an alternative food source]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 841-849.
    13. Deeto, S. & Thepa, S. & Monyakul, V. & Songprakorp, R., 2018. "The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification," Renewable Energy, Elsevier, vol. 115(C), pages 954-968.
    14. Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
    15. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
    16. Tagnamas, Zakaria & Lamsyehe, Hamza & Moussaoui, Haytem & Bahammou, Younes & Kouhila, Mounir & Idlimam, Ali & Lamharrar, Abdelkader, 2021. "Energy and exergy analyses of carob pulp drying system based on a solar collector," Renewable Energy, Elsevier, vol. 163(C), pages 495-503.
    17. Tiwari, Sumit & Tiwari, G.N., 2017. "Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector," Energy, Elsevier, vol. 128(C), pages 183-195.
    18. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    19. Cresencio P. Genobiagon Jr & Feliciano B. Alagao, 2019. "Performance Of Low-Cost Dual Circuit Solar Assisted Cabinet Dryer For Green Banana," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 42-45, January.
    20. H. Samimi. Akhijani & A. Arabhosseini & M.H. Kianmehr, 2016. "Effective moisture diffusivity during hot air solar drying of tomato slices," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(1), pages 15-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:93:y:2016:i:c:p:77-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.