Effective moisture diffusivity during hot air solar drying of tomato slices
Author
Abstract
Suggested Citation
DOI: 10.17221/33/2014-RAE
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
- Sami, Samaneh & Etesami, Nasrin & Rahimi, Amir, 2011. "Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results," Energy, Elsevier, vol. 36(5), pages 2847-2855.
- E. Mirzaee & S. Rafiee & A. Keyhani & Z. Emam-Djomeh, 2009. "Determining of moisture diffusivity and activation energy in drying of apricots," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 55(3), pages 114-120.
- Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hadi Samimi Akhijahani & Akbar Arabhosseini & Mohammad Hossein Kianmehr, 2017. "Comparative quality assessment of different drying procedures for plum fruits (Prunus domestica L.)," Czech Journal of Food Sciences, Czech Academy of Agricultural Sciences, vol. 35(5), pages 449-455.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
- Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
- Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
- Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
- Akyuz, E. & Coskun, C. & Oktay, Z. & Dincer, I., 2012. "A novel approach for estimation of photovoltaic exergy efficiency," Energy, Elsevier, vol. 44(1), pages 1059-1066.
- Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
- Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer," Energy, Elsevier, vol. 189(C).
- Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
- Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
- Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
- Abiodun A. Okunola & Timothy A. Adekanye & Clinton E. Okonkwo & Mohammad Kaveh & Mariusz Szymanek & Endurance O. Idahosa & Adeniyi T. Olayanju & Krystyna Wojciechowska, 2023. "Drying Characteristics, Kinetic Modeling, Energy and Exergy Analyses of Water Yam ( Dioscorea alata ) in a Hot Air Dryer," Energies, MDPI, vol. 16(4), pages 1-21, February.
- Azadbakht, Mohsen & Aghili, Hajar & Ziaratban, Armin & Torshizi, Mohammad Vahedi, 2017. "Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes," Energy, Elsevier, vol. 120(C), pages 947-958.
- Motevali, Ali & Minaei, Saeid & Khoshtaghaza, Mohammad Hadi & Amirnejat, Hamed, 2011. "Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices," Energy, Elsevier, vol. 36(11), pages 6433-6441.
- Ndukwu, M.C. & Onyenwigwe, D. & Abam, F.I. & Eke, A.B. & Dirioha, C., 2020. "Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage," Renewable Energy, Elsevier, vol. 154(C), pages 553-568.
- Arun, K.R. & Kunal, G. & Srinivas, M. & Kumar, C.S. Sujith & Mohanraj, M. & Jayaraj, S., 2020. "Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage," Energy, Elsevier, vol. 192(C).
- Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate," Energy, Elsevier, vol. 37(1), pages 749-758.
- Barati, E. & Esfahani, J.A., 2011. "Mathematical modeling of convective drying: Lumped temperature and spatially distributed moisture in slab," Energy, Elsevier, vol. 36(4), pages 2294-2301.
- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- M. A. Tawfik & Khaled M. Oweda & M. K. Abd El-Wahab & W. E. Abd Allah, 2023. "A New Mode of a Natural Convection Solar Greenhouse Dryer for Domestic Usage: Performance Assessment for Grape Drying," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
- Çoban, Harun & Abuşka, Mesut, 2024. "Drying of Sultana seedless (Vitis vinifera L.) grape variety in indirect drying chamber using solar air collector with conic dimpled absorber: The case of end-season drying," Renewable Energy, Elsevier, vol. 220(C).
More about this item
Keywords
falling rate period; Fick's second law; mathematical models; solar dryer; swivel collector;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:62:y:2016:i:1:id:33-2014-rae. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.