IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v62y2016i1id33-2014-rae.html
   My bibliography  Save this article

Effective moisture diffusivity during hot air solar drying of tomato slices

Author

Listed:
  • H. Samimi. Akhijani

    (Department of Agrotechnology, University of Tehran, College of Abouraihan, Tehran, Iran)

  • A. Arabhosseini

    (Department of Agrotechnology, University of Tehran, College of Abouraihan, Tehran, Iran)

  • M.H. Kianmehr

    (Department of Agrotechnology, University of Tehran, College of Abouraihan, Tehran, Iran)

Abstract

Mathematical modelling and effective moisture diffusivity of tomato (Lycopersicon esculentum) was studied during hot air solar drying. An experimental solar dryer with a swivel collector was used for experiments. The collector followed the solar radiation using a precious sensor. Drying experiments were performed in a thin layer hot air drying at slice thicknesses of 3, 5 and 7 mm and air velocities of 0.5, 1 and 2 m/s. The experimental data were fitted to different mathematical moisture ratio models and the Page model was selected as the best model according to correlation coefficient R2, chi-square χ2 and root mean square error (RMSE) parameters. The maximum values of moisture diffusivity was 6.98 × 10-9 m2/s at air velocity of 2 m/s and slice thickness of 7 mm while the minimum value of the moisture diffusivity was 1.58 × 10-9 m2/s at air velocity of 0.5 m/s and slice thickness of 3 mm.

Suggested Citation

  • H. Samimi. Akhijani & A. Arabhosseini & M.H. Kianmehr, 2016. "Effective moisture diffusivity during hot air solar drying of tomato slices," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(1), pages 15-23.
  • Handle: RePEc:caa:jnlrae:v:62:y:2016:i:1:id:33-2014-rae
    DOI: 10.17221/33/2014-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/33/2014-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/33/2014-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/33/2014-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
    2. E. Mirzaee & S. Rafiee & A. Keyhani & Z. Emam-Djomeh, 2009. "Determining of moisture diffusivity and activation energy in drying of apricots," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 55(3), pages 114-120.
    3. Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
    4. Sami, Samaneh & Etesami, Nasrin & Rahimi, Amir, 2011. "Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results," Energy, Elsevier, vol. 36(5), pages 2847-2855.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadi Samimi Akhijahani & Akbar Arabhosseini & Mohammad Hossein Kianmehr, 2017. "Comparative quality assessment of different drying procedures for plum fruits (Prunus domestica L.)," Czech Journal of Food Sciences, Czech Academy of Agricultural Sciences, vol. 35(5), pages 449-455.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    2. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
    3. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    4. Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
    5. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    6. Abiodun A. Okunola & Timothy A. Adekanye & Clinton E. Okonkwo & Mohammad Kaveh & Mariusz Szymanek & Endurance O. Idahosa & Adeniyi T. Olayanju & Krystyna Wojciechowska, 2023. "Drying Characteristics, Kinetic Modeling, Energy and Exergy Analyses of Water Yam ( Dioscorea alata ) in a Hot Air Dryer," Energies, MDPI, vol. 16(4), pages 1-21, February.
    7. Azadbakht, Mohsen & Aghili, Hajar & Ziaratban, Armin & Torshizi, Mohammad Vahedi, 2017. "Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes," Energy, Elsevier, vol. 120(C), pages 947-958.
    8. Motevali, Ali & Minaei, Saeid & Khoshtaghaza, Mohammad Hadi & Amirnejat, Hamed, 2011. "Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices," Energy, Elsevier, vol. 36(11), pages 6433-6441.
    9. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    10. Akyuz, E. & Coskun, C. & Oktay, Z. & Dincer, I., 2012. "A novel approach for estimation of photovoltaic exergy efficiency," Energy, Elsevier, vol. 44(1), pages 1059-1066.
    11. Ndukwu, M.C. & Onyenwigwe, D. & Abam, F.I. & Eke, A.B. & Dirioha, C., 2020. "Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage," Renewable Energy, Elsevier, vol. 154(C), pages 553-568.
    12. Arun, K.R. & Kunal, G. & Srinivas, M. & Kumar, C.S. Sujith & Mohanraj, M. & Jayaraj, S., 2020. "Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage," Energy, Elsevier, vol. 192(C).
    13. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate," Energy, Elsevier, vol. 37(1), pages 749-758.
    14. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    15. Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer," Energy, Elsevier, vol. 189(C).
    16. Barati, E. & Esfahani, J.A., 2011. "Mathematical modeling of convective drying: Lumped temperature and spatially distributed moisture in slab," Energy, Elsevier, vol. 36(4), pages 2294-2301.
    17. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    18. Tugce Ozsan Kilic & Ismail Boyar & Cuneyt Dincer & Can Ertekin & Ahmet Naci Onus, 2023. "Effects of Different Osmotic Pre-Treatments on the Drying Characteristics, Modeling and Physicochemical Properties of Momordica charantia L. Slices," Agriculture, MDPI, vol. 13(10), pages 1-21, September.
    19. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    20. Yahya, M. & Fudholi, Ahmad & Sopian, Kamaruzzaman, 2017. "Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace," Renewable Energy, Elsevier, vol. 105(C), pages 22-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:62:y:2016:i:1:id:33-2014-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.