IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v145y2021ics136403212100397x.html
   My bibliography  Save this article

A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel

Author

Listed:
  • Jemima Romola, C.V.
  • Meganaharshini, M.
  • Rigby, S.P.
  • Ganesh Moorthy, I.
  • Shyam Kumar, R.
  • Karthikumar, Sankar

Abstract

Achievement of sustainable development goals emphasizes alternative fuel strategies posing biodiesel production from plant and animal matter stressing long-chain fatty acid esters. Biodiesel production from renewable energy sources are largely preferred owing to its environment friendly and cost effective economic benefits. Nevertheless several limitations hurdle the efficiency of harnessing the maximal usage render the complexities to be rectified for advancing efficacy of biodiesel. Major issue posing severe hazard can be attributed to the ageing process namely oxidation that positively influence the engine performance and negatively alters storage capabilities. Chemical reactions after iterative chain modifications result in free radicals accumulation ameliorating ease of use in biodiesel. Hence, oxidative stability remains the prominent mechanism for enhancing the compatibility of biodiesel employing suitable antioxidants either natural or synthetic for optimally arresting the chain reactions thereby abating culmination of free radicals. The aim of this review was to analyze and compare the crucial role of natural and synthetic antioxidants in preventing the ageing process of biodiesel. Comparative analysis of the antioxidants that significantly escalates oxidative stability of biodiesel over the last two decades are assessed along with the strategic methodology are scrutinized for apprehending biodiesel stability subsequently based on oxidative stability.

Suggested Citation

  • Jemima Romola, C.V. & Meganaharshini, M. & Rigby, S.P. & Ganesh Moorthy, I. & Shyam Kumar, R. & Karthikumar, Sankar, 2021. "A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:rensus:v:145:y:2021:i:c:s136403212100397x
    DOI: 10.1016/j.rser.2021.111109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100397X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José María Encinar & Sergio Nogales & Juan Félix González, 2020. "The effect of BHA on oxidative stability of biodiesel from different sources," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1193-1201, December.
    2. Ramalingam, Senthil & Rajendran, Silambarasan & Ganesan, Pranesh & Govindasamy, Mohan, 2018. "Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 775-788.
    3. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Jeeban Poudel & Sujeeta Karki & Nawaraj Sanjel & Malesh Shah & Sea Cheon Oh, 2017. "Comparison of Biodiesel Obtained from Virgin Cooking Oil and Waste Cooking Oil Using Supercritical and Catalytic Transesterification," Energies, MDPI, vol. 10(4), pages 1-14, April.
    5. Rial, Rafael Cardoso & de Freitas, Osmar Nunes & Santos, Gemima dos & Nazário, Carlos Eduardo Domingues & Viana, Luíz Henrique, 2019. "Evaluation of the oxidative and thermal stability of soybean methyl biodiesel with additions of dichloromethane extract ginger (Zingiber officinale Roscoe)," Renewable Energy, Elsevier, vol. 143(C), pages 295-300.
    6. Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.
    7. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    8. Senthil, Ramalingam & Pranesh, Ganesan & Silambarasan, Rajendran, 2019. "Leaf extract additives: A solution for reduction of NOx emission in a biodiesel operated compression ignition engine," Energy, Elsevier, vol. 175(C), pages 862-878.
    9. Pullen, James & Saeed, Khizer, 2012. "An overview of biodiesel oxidation stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5924-5950.
    10. Jain, Siddharth & Sharma, M.P., 2010. "Review of different test methods for the evaluation of stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1937-1947, September.
    11. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    12. Rodrigues, Jailson Silva & do Valle, Camila Peixoto & Uchoa, Antonia Flávia Justino & Ramos, Denise Moreira & da Ponte, Flávio Albuquerque Ferreira & Rios, Maria Alexsandra de Sousa & de Queiroz Malve, 2020. "Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil," Renewable Energy, Elsevier, vol. 156(C), pages 1100-1106.
    13. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Jain, Siddharth & Sharma, M.P., 2010. "Stability of biodiesel and its blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 667-678, February.
    15. Varatharajan, K. & Pushparani, D.S., 2018. "Screening of antioxidant additives for biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2017-2028.
    16. Sergio Nogales-Delgado & José María Encinar & Juan Félix González, 2019. "Safflower Biodiesel: Improvement of its Oxidative Stability by Using BHA and TBHQ," Energies, MDPI, vol. 12(10), pages 1-13, May.
    17. Tariq, Muhammad & Ali, Saqib & Khalid, Nasir, 2012. "Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6303-6316.
    18. Adewale, Peter & Dumont, Marie-Josée & Ngadi, Michael, 2015. "Recent trends of biodiesel production from animal fat wastes and associated production techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 574-588.
    19. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigues, Jailson Silva & do Valle, Camila Peixoto & Uchoa, Antonia Flávia Justino & Ramos, Denise Moreira & da Ponte, Flávio Albuquerque Ferreira & Rios, Maria Alexsandra de Sousa & de Queiroz Malve, 2020. "Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil," Renewable Energy, Elsevier, vol. 156(C), pages 1100-1106.
    2. Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
    3. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    4. Correia, I.A.S. & Borsato, D. & Savada, F.Y. & Pauli, E.D. & Mantovani, A.C.G. & Cremasco, H. & Chendynski, L.T., 2020. "Inhibition of the biodiesel oxidation by alcoholic extracts of green and black tea leaves and plum pulp: Application of the simplex-centroid design," Renewable Energy, Elsevier, vol. 160(C), pages 288-296.
    5. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    6. Nogueira, Tiago Rocha & de Mesquita Figueredo, Igor & Tavares Luna, Francisco Murilo & Cavalcante, Célio Loureiro & Evangelista de Ávila dos Santos, João & Sousa Lima, Mary Anne & Josino da Silva, Thi, 2020. "Evaluation of oxidative stability of soybean biodiesel using ethanolic and chloroform extracts of Platymiscium floribundum as antioxidant," Renewable Energy, Elsevier, vol. 159(C), pages 767-774.
    7. Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.
    8. Sergio Nogales-Delgado & José María Encinar & Juan Félix González, 2019. "Safflower Biodiesel: Improvement of its Oxidative Stability by Using BHA and TBHQ," Energies, MDPI, vol. 12(10), pages 1-13, May.
    9. Sergio Nogales-Delgado & Agustina Guiberteau Cabanillas & Juan Pedro Moro & José María Encinar Martín, 2023. "Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation," Clean Technol., MDPI, vol. 5(2), pages 1-15, May.
    10. Javier Sáez-Bastante & Miguel Carmona-Cabello & Elena Villarreal-Ornelas & Ricardo Trejo-Calzada & Sara Pinzi & M. Pilar Dorado, 2023. "Feasibility of the Production of Argemone pleiacantha Ultrasound-Assisted Biodiesel for Temperate and Tropical Marginal Areas," Energies, MDPI, vol. 16(6), pages 1-14, March.
    11. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    12. Lanjekar, R.D. & Deshmukh, D., 2016. "A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1401-1411.
    13. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    15. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    16. José María Encinar & Sergio Nogales & Juan Félix González, 2020. "The effect of BHA on oxidative stability of biodiesel from different sources," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1193-1201, December.
    17. Youssef Kassem & Hüseyin Çamur & Ebaa Alassi, 2020. "Biodiesel Production from Four Residential Waste Frying Oils: Proposing Blends for Improving the Physicochemical Properties of Methyl Biodiesel," Energies, MDPI, vol. 13(16), pages 1-25, August.
    18. Fazal, M.A. & Jakeria, M.R. & Haseeb, A.S.M.A. & Rubaiee, Saeed, 2017. "Effect of antioxidants on the stability and corrosiveness of palm biodiesel upon exposure of different metals," Energy, Elsevier, vol. 135(C), pages 220-226.
    19. Govindasamy, Mohan & Ramalingam, Senthil & Dhairiyasamy, Ratchagaraja & Rajendran, Silambarasan, 2022. "Investigation on thermal and storage stability of the Calophyllum inophyllum ester with natural leaf extract as antioxidant additive," Energy, Elsevier, vol. 253(C).
    20. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:145:y:2021:i:c:s136403212100397x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.