IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v242y2025ics0960148125000072.html
   My bibliography  Save this article

A novel biodegradable nanoparticle as a robust biodiesel antioxidant, and fuel additive for improvement of diesel engine performance and exhaust emission

Author

Listed:
  • Torkzaban, Sama
  • Feyzi, Mostafa
  • Norouzi, Leila

Abstract

Pomegranate peel carbon quantum dots were synthesized through a hydrothermal process. This innovative green nanoparticle underwent characterization using UV–visible spectroscopy, TEM, FT-IR, XRD, CHN, and N2 adsorption–desorption isotherms. The effects of pomegranate peel carbon quantum dots on greenhouse gas emissions from diesel engines and the efficiency of diesel engines were assessed by utilizing wasted frying oil biodiesel with a B20 volumetric concentration. Different concentrations of pomegranate peel CQDs (100, 300, and 600ppm) were tested for each fuel blend. The results indicated that when compared to D100 fuel, the optimal concentration of carbon quantum dots (600 ppm) led to significant improvements in torque, power, CO, UHC, and NOx levels by 12.113 %, 18.606 %, 14.12 %, 33.85 %, and 26 %, respectively. Furthermore, the oxidation stability of biodiesel was examined using the Rancimat technique, revealing that biodiesel derived from wasted frying oil exhibited low oxidation stability (6 h). To enhance the stability, three antioxidants were tested: pomegranate peel carbon quantum dot, synthetic antioxidant BHA, and alcoholic extract of pomegranate peel. Accelerated tests using the Rancimat technique demonstrated a substantial increase in the storage stability of wasted sunflower oil biodiesel when mixed with pomegranate peel carbon quantum dot (92.21 h), BHA (36.5 h), and alcoholic extract of pomegranate peel (12.48 h) at a concentration of 7000 ppm. Overall, these findings suggest that pomegranate peel carbon quantum dots serve as effective antioxidants for biodiesel and as alternative fuel additives to enhance diesel exhaust emissions and engine efficiency.

Suggested Citation

  • Torkzaban, Sama & Feyzi, Mostafa & Norouzi, Leila, 2025. "A novel biodegradable nanoparticle as a robust biodiesel antioxidant, and fuel additive for improvement of diesel engine performance and exhaust emission," Renewable Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000072
    DOI: 10.1016/j.renene.2025.122345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125000072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khoshnevisan, Benyamin & Tabatabaei, Meisam & Tsapekos, Panagiotis & Rafiee, Shahin & Aghbashlo, Mortaza & Lindeneg, Susanne & Angelidaki, Irini, 2020. "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Feyzi, Mostafa & Norouzi, Leila, 2016. "Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production," Renewable Energy, Elsevier, vol. 94(C), pages 579-586.
    3. Jemima Romola, C.V. & Meganaharshini, M. & Rigby, S.P. & Ganesh Moorthy, I. & Shyam Kumar, R. & Karthikumar, Sankar, 2021. "A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    5. Ettefaghi, Ehsanollah & Ghobadian, Barat & Rashidi, Alimorad & Najafi, G. & Khoshtaghaza, Mohammad Hadi & Rashtchi, Maryam & Sadeghian, Sina, 2018. "A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions," Renewable Energy, Elsevier, vol. 125(C), pages 64-72.
    6. Badawy, Tawfik & Mansour, Mohy S. & Daabo, Ahmed M. & Abdel Aziz, Mostafa M. & Othman, Abdelrahman A. & Barsoum, Fady & Basouni, Mohamed & Hussien, Mohamed & Ghareeb, Mourad & Hamza, Mahmoud & Wang, C, 2021. "Selection of second-generation crop for biodiesel extraction and testing its impact with nano additives on diesel engine performance and emissions," Energy, Elsevier, vol. 237(C).
    7. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    8. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Varatharajan, K. & Pushparani, D.S., 2018. "Screening of antioxidant additives for biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2017-2028.
    10. Nagaraja, S. & Dsilva Winfred Rufuss, D. & Hossain, A.K., 2020. "Microscopic characteristics of biodiesel – Graphene oxide nanoparticle blends and their Utilisation in a compression ignition engine," Renewable Energy, Elsevier, vol. 160(C), pages 830-841.
    11. Torkzaban, Sama & Feyzi, Mostafa & norouzi, Leila, 2022. "A novel robust CaO/ZnFe2O4 hollow magnetic microspheres heterogenous catalyst for synthesis biodiesel from waste frying sunflower oil," Renewable Energy, Elsevier, vol. 200(C), pages 996-1007.
    12. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    2. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.
    4. Wang, Tianyu & Ma, Xiaoling & Bingwa, Ndzondelelo & Yu, Hao & Wang, Yunpu & Li, Guoning & Guo, Min & Xiao, Qiangqiang & Li, Shijie & Zhao, Xudong & Li, Hui, 2024. "A novel bimetallic CaFe-MOF derivative for transesterification: Catalytic performance, characterization, and stability," Energy, Elsevier, vol. 292(C).
    5. Jemima Romola, C.V. & Meganaharshini, M. & Rigby, S.P. & Ganesh Moorthy, I. & Shyam Kumar, R. & Karthikumar, Sankar, 2021. "A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Girardi, Julio Cezar & Bariccatti, Reinaldo Aparecido & Savada, Felipe Yassuo & Borsato, Dionísio & Melegari de Souza, Samuel Nelson & Amaral, Camila Zeni & Prior, Maritane, 2020. "Response surface methodology for the optimization of oxidative stability through the use of natural additives," Renewable Energy, Elsevier, vol. 159(C), pages 346-355.
    7. David Fernández-Gutiérrez & Alejandra Argüelles & Gemma Castejón Martínez & José M. Soriano Disla & Andrés J. Lara-Guillén, 2022. "Unlocking New Value from Urban Biowaste: LCA of the VALUEWASTE Biobased Products," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    8. repec:zib:zjmerd:4jmerd2018-22-32 is not listed on IDEAS
    9. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    10. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    11. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    12. Binhweel, Fozy & Pyar, Hassan & Senusi, Wardah & Shaah, Marwan Abdulhakim & Hossain, Md Sohrab & Ahmad, Mardiana Idayu, 2023. "Utilization of marine ulva lactuca seaweed and freshwater azolla filiculoides macroalgae feedstocks toward biodiesel production: Kinetics, thermodynamics, and optimization studies," Renewable Energy, Elsevier, vol. 205(C), pages 717-730.
    13. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    14. Harsha Hebbar, H.R. & Math, M.C. & Yatish, K.V., 2018. "Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil," Energy, Elsevier, vol. 143(C), pages 25-34.
    15. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Ashok, B. & Usman, Kaisan Muhammad & Vignesh, R. & Umar, U.A., 2022. "Model-based injector control map development to improve CRDi engine performance and emissions for eucalyptus biofuel," Energy, Elsevier, vol. 246(C).
    17. Obed M. Ali & Rizalman Mamat & Gholamhassan Najafi & Talal Yusaf & Seyed Mohammad Safieddin Ardebili, 2015. "Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods," Energies, MDPI, vol. 8(12), pages 1-15, December.
    18. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    19. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    20. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    21. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.