IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017615.html
   My bibliography  Save this article

The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil

Author

Listed:
  • Lani, Nurul Saadiah
  • Ngadi, Norzita
  • Haron, Saharudin
  • Mohammed Inuwa, Ibrahim
  • Anako Opotu, Lawal

Abstract

This research focuses on developing a magnetically supported catalyst for efficient transesterification reaction of used cooking oil (UCO). The catalyst consists of calcium oxide (CaO) and ZSM-5 zeolite, which were synthesized using waste chicken eggshell and rice husk. Meanwhile, magnetite (Fe3O4) was used as a magnetic component. Various magnetic zeolite-supported CaO catalysts (CaZ/Fe) were prepared with different amounts of CaO (10, 30, 50, and 80 wt% of zeolite) and Fe3O4 (1:0.5, 1:1, 1:1.5 and 1:2 of CaO-zeolite:Fe3O4 ratio). The results identified the 50CaZ/0.5Fe catalyst as the most effective. The catalyst displayed a high surface area, strong basicity, and ideal morphology, thus contributing to a higher biodiesel yield of 91%. The recovery rate of the 50CaZ/0.5Fe catalyst was 88%, suggesting minimal loss and easy catalyst separation post-reaction using an external magnetic field. It also displayed superior stability, obtaining 85% biodiesel yield after 4 uses. The activation energy calculated in the kinetic study was 14.085 kJ/mol. Moreover, the properties of the synthesized biodiesel met the standards set by the ASTM D6751. Overall, the 50CaZ/0.5Fe catalyst with good magnetic behaviour and exhibits excellent catalytic activity suggested that this catalyst is promising for application in biodiesel production.

Suggested Citation

  • Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017615
    DOI: 10.1016/j.renene.2023.119846
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Wenlei & Han, Yuxiang & Wang, Hongyan, 2018. "Magnetic Fe3O4/MCM-41 composite-supported sodium silicate as heterogeneous catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 125(C), pages 675-681.
    2. Zhang, Yujiao & Niu, Shengli & Han, Kuihua & Li, Yingjie & Lu, Chunmei, 2021. "Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel," Renewable Energy, Elsevier, vol. 168(C), pages 981-990.
    3. Ashok, A. & Ratnaji, T. & John Kennedy, L. & Judith Vijaya, J. & Gnana Pragash, R., 2021. "Magnetically recoverable Mg substituted zinc ferrite nanocatalyst for biodiesel production: Process optimization, kinetic and thermodynamic analysis," Renewable Energy, Elsevier, vol. 163(C), pages 480-494.
    4. Flores, Ken P. & Omega, Jan Laurence O. & Cabatingan, Luis K. & Go, Alchris W. & Agapay, Ramelito C. & Ju, Yi-Hsu, 2019. "Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 130(C), pages 510-523.
    5. Sun, Hao & Ma, Mingzhe & Fan, Mengmeng & Sun, Kang & Xu, Wei & Wang, Kui & Li, Baojun & Jiang, Jianchun, 2022. "Controllable preparation of biomass derived mesoporous activated carbon supported nano-CaO catalysts for biodiesel production," Energy, Elsevier, vol. 261(PB).
    6. Lawan, Ibrahim & Garba, Zahraddeen N. & Zhou, Weiming & Zhang, Mingxin & Yuan, Zhanhui, 2020. "Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production," Renewable Energy, Elsevier, vol. 145(C), pages 2550-2560.
    7. Lawan, Ibrahim & Zhou, Weiming & Garba, Zaharaddeen Nasiru & Zhang, Mingxin & Yuan, Zhanhui & Chen, Lihui, 2019. "Critical insights into the effects of bio-based additives on biodiesels properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 83-95.
    8. Kodgire, Pravin & Sharma, Anvita & Kachhwaha, Surendra Singh, 2023. "Optimization and kinetics of biodiesel production of Ricinus communis oil and used cottonseed cooking oil employing synchronised ‘ultrasound + microwave’ and heterogeneous CaO catalyst," Renewable Energy, Elsevier, vol. 212(C), pages 320-332.
    9. Mazaheri, Hoora & Ong, Hwai Chyuan & Masjuki, H.H. & Amini, Zeynab & Harrison, Mark D. & Wang, Chin-Tsan & Kusumo, Fitranto & Alwi, Azham, 2018. "Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell," Energy, Elsevier, vol. 144(C), pages 10-19.
    10. Foroutan, Rauf & Mohammadi, Reza & Razeghi, Jafar & Ramavandi, Bahman, 2021. "Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst," Renewable Energy, Elsevier, vol. 168(C), pages 1207-1216.
    11. Goli, Jibril & Sahu, Omprakash, 2018. "Development of heterogeneous alkali catalyst from waste chicken eggshell for biodiesel production," Renewable Energy, Elsevier, vol. 128(PA), pages 142-154.
    12. Laskar, Ikbal Bahar & Gupta, Rajat & Chatterjee, Sushovan & Vanlalveni, Chhangte & Rokhum, Lalthazuala, 2020. "Taming waste: Waste Mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature," Renewable Energy, Elsevier, vol. 161(C), pages 207-220.
    13. Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
    14. Feyzi, Mostafa & Norouzi, Leila, 2016. "Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production," Renewable Energy, Elsevier, vol. 94(C), pages 579-586.
    15. Sulaiman, Nur Fatin & Hashim, Ainul Nadia Nor & Toemen, Susilawati & Rosid, Salmiah Jamal Mat & Mokhtar, Wan Nur Aini Wan & Nadarajan, Renugambaal & Bakar, Wan Azelee Wan Abu, 2020. "Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification," Renewable Energy, Elsevier, vol. 153(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Xiaoling & Yan, Su & Tie, Xinlong & Lei, Xidan & Liu, Zhiyi & Ma, Zhichao & Wang, Tielin & Feng, Weiliang, 2024. "Bimetallic Ce-Cr doped metal-organic frameworks as a heterogeneous catalyst for highly efficient biodiesel production from insect lipids," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torkzaban, Sama & Feyzi, Mostafa & norouzi, Leila, 2022. "A novel robust CaO/ZnFe2O4 hollow magnetic microspheres heterogenous catalyst for synthesis biodiesel from waste frying sunflower oil," Renewable Energy, Elsevier, vol. 200(C), pages 996-1007.
    2. Li, Hui & Wang, Yongbo & Han, Zhihao & Wang, Tianyu & Wang, Yunpu & Liu, Chenhui & Guo, Min & Li, Guoning & Lu, Wanpeng & Yu, Mingzhi & Ma, Xiaoling, 2022. "Nanosheet like CaO/C derived from Ca-BTC for biodiesel production assisted with microwave," Applied Energy, Elsevier, vol. 326(C).
    3. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    4. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Cheung, Siu Ming & Chen, Xiankun, 2023. "Esterification efficiency improvement of carbon-based solid acid catalysts induced by biomass pretreatments: Intrinsic mechanism," Energy, Elsevier, vol. 263(PB).
    5. Ghasemi, Iman & Haghighi, Mohammad & Bekhradinassab, Ensie & Ebrahimi, Alireza, 2024. "Ultrasound-assisted dispersion of bifunctional CaO-ZrO2 nanocatalyst over acidified kaolin for production of biodiesel from waste cooking oil," Renewable Energy, Elsevier, vol. 225(C).
    6. Ezzati, Rohollah & Ranjbar, Shahram & Soltanabadi, Azim, 2021. "Kinetics models of transesterification reaction for biodiesel production: A theoretical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 280-296.
    7. Maleki, Basir & Ashraf Talesh, S. Siamak, 2022. "Optimization of ZnO incorporation to αFe2O3 nanoparticles as an efficient catalyst for biodiesel production in a sonoreactor: Application on the CI engine," Renewable Energy, Elsevier, vol. 182(C), pages 43-59.
    8. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Melo, Vinícius Mateó e & Ferreira, Gabriela Filipini & Fregolente, Leonardo Vasconcelos, 2024. "Sustainable catalysts for biodiesel production: The potential of CaO supported on sugarcane bagasse biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Pascoal, C.V.P. & Oliveira, A.L.L. & Figueiredo, D.D. & Assunção, J.C.C., 2020. "Optimization and kinetic study of ultrasonic-mediated in situ transesterification for biodiesel production from the almonds of Syagrus cearensis," Renewable Energy, Elsevier, vol. 147(P1), pages 1815-1824.
    11. Chanthon, Narita & Munbupphachart, Nattawadee & Ngaosuwan, Kanokwan & Kiatkittipong, Worapon & Wongsawaeng, Doonyapong & Mens, Weerinda & Rokhum, Samuel Lalthazuala & Assabumrungrat, Suttichai, 2023. "Metal loading on CaO/Al2O3 pellet catalyst as a booster for transesterification in biodiesel production," Renewable Energy, Elsevier, vol. 218(C).
    12. Xu, Chunping & Nasrollahzadeh, Mahmoud & Sajjadi, Mohaddeseh & Maham, Mehdi & Luque, Rafael & Puente-Santiago, Alain R., 2019. "Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 195-252.
    13. S, Prabakaran & T, Mohanraj & A, Arumugam, 2021. "Azolla pinnata methyl ester production and process optimization using a novel heterogeneous catalyst," Renewable Energy, Elsevier, vol. 180(C), pages 353-371.
    14. Che Zhao & Hongyuan Chen & Xiao Wu & Rui Shan, 2023. "Exploiting the Waste Biomass of Durian Shell as a Heterogeneous Catalyst for Biodiesel Production at Room Temperature," IJERPH, MDPI, vol. 20(3), pages 1-10, January.
    15. Li, Ying & Niu, Shengli & Hao, Yanan & Zhou, Wenbo & Wang, Jun & Liu, Jiangwei, 2022. "Role of oxygen vacancy on activity of Fe-doped SrTiO3 perovskite bifunctional catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 199(C), pages 1258-1271.
    16. Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.
    17. Hoora Mazaheri & Hwai Chyuan Ong & Zeynab Amini & Haji Hassan Masjuki & M. Mofijur & Chia Hung Su & Irfan Anjum Badruddin & T.M. Yunus Khan, 2021. "An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective," Energies, MDPI, vol. 14(13), pages 1-23, July.
    18. Zhang, Bingxin & Gao, Ming & Geng, Jiayu & Cheng, Yuwei & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Liu, Shu & Cheung, Siu Ming, 2021. "Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction," Renewable Energy, Elsevier, vol. 164(C), pages 824-832.
    19. Li, Dongming & Feng, Wenping & Chen, Chao & Chen, Shangxing & Fan, Guorong & Liao, Shengliang & Wu, Guoqiang & Wang, Zongde, 2021. "Transesterification of Litsea cubeba kernel oil to biodiesel over zinc supported on zirconia heterogeneous catalysts," Renewable Energy, Elsevier, vol. 177(C), pages 13-22.
    20. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.