IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp13-22.html
   My bibliography  Save this article

Transesterification of Litsea cubeba kernel oil to biodiesel over zinc supported on zirconia heterogeneous catalysts

Author

Listed:
  • Li, Dongming
  • Feng, Wenping
  • Chen, Chao
  • Chen, Shangxing
  • Fan, Guorong
  • Liao, Shengliang
  • Wu, Guoqiang
  • Wang, Zongde

Abstract

An effective approach for synthesizing green and sustainable biodiesel fuel from low-value vegetable oils has been explored. Herein, a series of catalysts of zinc supported on zirconia (xZn/ZrO2) were successfully synthesized, characterized, and applied for the production of biodiesel from Litsea cubeba kernel oil (LCKO) through the transesterification process. The results showed that the monoclinic phase structure of the prepared catalysts transformed to the more stable tetragonal phase structure after supporting different Zn loadings (≥5%). Compared with the pure ZrO2, the highly dispersed Zn species on the surface of xZn/ZrO2 could be divided into Zn oxide and ZnOH+, which could promote the transesterification of LCKO. Thus, the 7%Zn/ZrO2 catalyst exhibited the best catalytic activity of the LCKO conversion 82.5%, which was attributed to the positive effects of both the ZrO2 support and Zn species. Furthermore, the various reaction parameters (such as reaction time, stirring rate, nCH3OH:nLCKO, catalyst amount, and reaction temperature) were investigated systematically and optimized carefully. And a possible mechanism of the transesterification process catalyzed by Zn/ZrO2 catalysts was also proposed. Finally, the physical properties of the as-synthesized biodiesel accorded with the current international biodiesel standards.

Suggested Citation

  • Li, Dongming & Feng, Wenping & Chen, Chao & Chen, Shangxing & Fan, Guorong & Liao, Shengliang & Wu, Guoqiang & Wang, Zongde, 2021. "Transesterification of Litsea cubeba kernel oil to biodiesel over zinc supported on zirconia heterogeneous catalysts," Renewable Energy, Elsevier, vol. 177(C), pages 13-22.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:13-22
    DOI: 10.1016/j.renene.2021.05.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ambat, Indu & Srivastava, Varsha & Haapaniemi, Esa & Sillanpää, Mika, 2019. "Nano-magnetic potassium impregnated ceria as catalyst for the biodiesel production," Renewable Energy, Elsevier, vol. 139(C), pages 1428-1436.
    2. Mendonça, Iasmin M. & Paes, Orlando A.R.L. & Maia, Paulo J.S. & Souza, Mayane P. & Almeida, Richardson A. & Silva, Cláudia C. & Duvoisin, Sérgio & de Freitas, Flávio A., 2019. "New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study," Renewable Energy, Elsevier, vol. 130(C), pages 103-110.
    3. Harsha Hebbar, H.R. & Math, M.C. & Yatish, K.V., 2018. "Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil," Energy, Elsevier, vol. 143(C), pages 25-34.
    4. Veiga, Paula M. & Veloso, Claudia O. & Henriques, Cristiane A., 2016. "Synthesis of Zn,La-catalysts for biodiesel production from edible and acid soybean oil," Renewable Energy, Elsevier, vol. 99(C), pages 543-552.
    5. Yu, Jie & Liu, Sheng & Cardoso, Aderlanio & Han, Yang & Bikane, Kagiso & Sun, Lushi, 2019. "Catalytic pyrolysis of rubbers and vulcanized rubbers using modified zeolites and mesoporous catalysts with Zn and Cu," Energy, Elsevier, vol. 188(C).
    6. Goli, Jibril & Sahu, Omprakash, 2018. "Development of heterogeneous alkali catalyst from waste chicken eggshell for biodiesel production," Renewable Energy, Elsevier, vol. 128(PA), pages 142-154.
    7. Narowska, Beata & Kułażyński, Marek & Łukaszewicz, Marcin & Burchacka, Ewa, 2019. "Use of activated carbons as catalyst supports for biodiesel production," Renewable Energy, Elsevier, vol. 135(C), pages 176-185.
    8. Mazaheri, Hoora & Ong, Hwai Chyuan & Masjuki, H.H. & Amini, Zeynab & Harrison, Mark D. & Wang, Chin-Tsan & Kusumo, Fitranto & Alwi, Azham, 2018. "Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell," Energy, Elsevier, vol. 144(C), pages 10-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ying & Niu, Shengli & Hao, Yanan & Zhou, Wenbo & Wang, Jun & Liu, Jiangwei, 2022. "Role of oxygen vacancy on activity of Fe-doped SrTiO3 perovskite bifunctional catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 199(C), pages 1258-1271.
    2. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2022. "Carbon-templated meso-design of nanostructured CeAPSO-34 for biodiesel production from free fatty acid and waste oil," Renewable Energy, Elsevier, vol. 195(C), pages 716-733.
    3. Wang, Quan & Wenlei Xie, & Guo, Lihong, 2022. "Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils," Renewable Energy, Elsevier, vol. 187(C), pages 907-922.
    4. Ramoon Barros Lovate Temporim & Gianluca Cavalaglio & Alessandro Petrozzi & Valentina Coccia & Franco Cotana & Andrea Nicolini, 2022. "Life Cycle Assessment of Cynara cardunculus L. -Based Polygeneration and Biodiesel Chains," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    5. Wong, Wan-Ying & Lim, Steven & Pang, Yean-Ling & Shuit, Siew-Hoong & Lam, Man-Kee & Tan, Inn-Shi & Chen, Wei-Hsin, 2023. "A comprehensive review of the production methods and effect of parameters for glycerol-free biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    6. Tuti Suryati & Euis Julaeha & Kindi Farabi & Hanies Ambarsari & Ace Tatang Hidayat, 2023. "Lauric Acid from the Black Soldier Fly ( Hermetia illucens ) and Its Potential Applications," Sustainability, MDPI, vol. 15(13), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hui & Liu, Fengsheng & Ma, Xiaoling & Cui, Ping & Guo, Min & Li, Yan & Gao, Yan & Zhou, Shoujun & Yu, Mingzhi, 2020. "An efficient basic heterogeneous catalyst synthesis of magnetic mesoporous Fe@C support SrO for transesterification," Renewable Energy, Elsevier, vol. 149(C), pages 816-827.
    2. Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.
    3. Aisien, Felix Aibuedefe & Aisien, Eki Tina, 2023. "Modeling and optimization of transesterification of rubber seed oil using sulfonated CaO derived from giant African land snail (Achatina fulica) catalyst by response surface methodology," Renewable Energy, Elsevier, vol. 207(C), pages 137-146.
    4. Liang Zhou & Jingang Yao & Zhaoxia Ren & Zhenqiang Yu & Hongzhen Cai, 2020. "Development of Magnetic Multi-Shelled Hollow Catalyst for Biodiesel Production," Energies, MDPI, vol. 13(11), pages 1-14, June.
    5. Hoora Mazaheri & Hwai Chyuan Ong & Zeynab Amini & Haji Hassan Masjuki & M. Mofijur & Chia Hung Su & Irfan Anjum Badruddin & T.M. Yunus Khan, 2021. "An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective," Energies, MDPI, vol. 14(13), pages 1-23, July.
    6. Gülüm, Mert & Onay, Funda Kutlu & Bilgin, Atilla, 2018. "Comparison of viscosity prediction capabilities of regression models and artificial neural networks," Energy, Elsevier, vol. 161(C), pages 361-369.
    7. Xu, Chunping & Nasrollahzadeh, Mahmoud & Sajjadi, Mohaddeseh & Maham, Mehdi & Luque, Rafael & Puente-Santiago, Alain R., 2019. "Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 195-252.
    8. Ahmad, Shamshad & Chaudhary, Shalini & Pathak, Vinayak V. & Kothari, Richa & Tyagi, V.V., 2020. "Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano – CaO catalyst," Renewable Energy, Elsevier, vol. 160(C), pages 86-97.
    9. Miladinović, Marija R. & Zdujić, Miodrag V. & Veljović, Djordje N. & Krstić, Jugoslav B. & Banković-Ilić, Ivana B. & Veljković, Vlada B. & Stamenković, Olivera S., 2020. "Valorization of walnut shell ash as a catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 1033-1043.
    10. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    11. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    12. Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
    13. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    14. Hao, Xiaohong & Suo, Hang & Zhang, Guanhua & Xu, Peixing & Gao, Xin & Du, Su, 2021. "Ultrasound-assisted enzymatic preparation of fatty acid ethyl ester in deep eutectic solvent," Renewable Energy, Elsevier, vol. 164(C), pages 937-947.
    15. Sahar, Juma & Farooq, Muhammad & Ramli, Anita & Naeem, Abdul & Khattak, Noor Saeed & Ghazi, Zahid Ali, 2022. "Highly efficient heteropoly acid decorated SnO2@Co-ZIF nanocatalyst for sustainable biodiesel production from Nannorrhops ritchiana seeds oil," Renewable Energy, Elsevier, vol. 198(C), pages 306-318.
    16. Fitranto Kusumo & T.M.I. Mahlia & A.H. Shamsuddin & Hwai Chyuan Ong & A.R Ahmad & Z. Ismail & Z.C. Ong & A.S. Silitonga, 2019. "The Effect of Multi-Walled Carbon Nanotubes-Additive in Physicochemical Property of Rice Brand Methyl Ester: Optimization Analysis," Energies, MDPI, vol. 12(17), pages 1-19, August.
    17. Jin, Jiafeng & Sun, Jinsheng & Lv, Kaihe & Hou, Qilin & Guo, Xuan & Liu, Kesong & Deng, Yan & Song, Lide, 2023. "Catalytic pyrolysis of oil shale using tailored Cu@zeolite catalyst and molecular dynamic simulation," Energy, Elsevier, vol. 278(PA).
    18. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Abdelghany, Amr & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Magnetized ZIF-8 impregnated with sodium hydroxide as a heterogeneous catalyst for high-quality biodiesel production," Renewable Energy, Elsevier, vol. 165(P1), pages 405-419.
    19. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    20. Sarah Oluwabunmi Bitire & Emeka Charles Nwanna & Tien-Chien Jen, 2023. "The impact of CuO nanoparticles as fuel additives in biodiesel-blend fuelled diesel engine: A review," Energy & Environment, , vol. 34(7), pages 2259-2289, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:13-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.