Evaluation of oxidative stability of soybean biodiesel using ethanolic and chloroform extracts of Platymiscium floribundum as antioxidant
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.06.062
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sander, Aleksandra & Antonije Košćak, Mihael & Kosir, Dominik & Milosavljević, Nikola & Parlov Vuković, Jelena & Magić, Lana, 2018. "The influence of animal fat type and purification conditions on biodiesel quality," Renewable Energy, Elsevier, vol. 118(C), pages 752-760.
- Rodrigues, Jailson Silva & do Valle, Camila Peixoto & Uchoa, Antonia Flávia Justino & Ramos, Denise Moreira & da Ponte, Flávio Albuquerque Ferreira & Rios, Maria Alexsandra de Sousa & de Queiroz Malve, 2020. "Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil," Renewable Energy, Elsevier, vol. 156(C), pages 1100-1106.
- Rial, Rafael Cardoso & de Freitas, Osmar Nunes & Santos, Gemima dos & Nazário, Carlos Eduardo Domingues & Viana, Luíz Henrique, 2019. "Evaluation of the oxidative and thermal stability of soybean methyl biodiesel with additions of dichloromethane extract ginger (Zingiber officinale Roscoe)," Renewable Energy, Elsevier, vol. 143(C), pages 295-300.
- Varatharajan, K. & Pushparani, D.S., 2018. "Screening of antioxidant additives for biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2017-2028.
- Rial, Rafael Cardoso & Merlo, Thais Cardoso & Michalski Santos, Piter Hernanny & Dias Melo, Luiz Felipe & Barbosa, Reginaldo Aparecido & de Freitas, Osmar Nunes & Domingues Nazário, Carlos Eduardo & V, 2020. "Evaluation of oxidative stability of soybean methyl biodiesel using extract of cagaite leaves (Eugenia dysenterica DC.) as additive," Renewable Energy, Elsevier, vol. 152(C), pages 1079-1085.
- Cavalheiro, Leandro Fontoura & Misutsu, Marcelo Yukio & Rial, Rafael Cardoso & Viana, Luíz Henrique & Oliveira, Lincoln Carlos Silva, 2020. "Characterization of residues and evaluation of the physico chemical properties of soybean biodiesel and biodiesel: Diesel blends in different storage conditions," Renewable Energy, Elsevier, vol. 151(C), pages 454-462.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Xiaokang & Li, Nana & Wei, Zhong & Dai, Bin & Han, Sheng, 2022. "Synthesis and evaluation of bifunctional polymeric agent for improving cold flow properties and oxidation stability of diesel-biodiesel blends," Renewable Energy, Elsevier, vol. 196(C), pages 737-748.
- Umar, Yusuf & Velasco, Orlando & Abdelaziz, Omar Y. & Aboelazayem, Omar & Gadalla, Mamdouh A. & Hulteberg, Christian P. & Saha, Basudeb, 2022. "A renewable lignin-derived bio-oil for boosting the oxidation stability of biodiesel," Renewable Energy, Elsevier, vol. 182(C), pages 867-878.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jemima Romola, C.V. & Meganaharshini, M. & Rigby, S.P. & Ganesh Moorthy, I. & Shyam Kumar, R. & Karthikumar, Sankar, 2021. "A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Youssef Kassem & Hüseyin Çamur & Ebaa Alassi, 2020. "Biodiesel Production from Four Residential Waste Frying Oils: Proposing Blends for Improving the Physicochemical Properties of Methyl Biodiesel," Energies, MDPI, vol. 13(16), pages 1-25, August.
- Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.
- Sergio Nogales-Delgado & Agustina Guiberteau Cabanillas & Juan Pedro Moro & José María Encinar Martín, 2023. "Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation," Clean Technol., MDPI, vol. 5(2), pages 1-15, May.
- Girardi, Julio Cezar & Bariccatti, Reinaldo Aparecido & Savada, Felipe Yassuo & Borsato, Dionísio & Melegari de Souza, Samuel Nelson & Amaral, Camila Zeni & Prior, Maritane, 2020. "Response surface methodology for the optimization of oxidative stability through the use of natural additives," Renewable Energy, Elsevier, vol. 159(C), pages 346-355.
- Jaiswal, Krishna Kumar & Dutta, Swapnamoy & Banerjee, Ishita & Jaiswal, Km Smriti & Renuka, Nirmal & Ratha, Sachitra Kumar & Jaiswal, Amit K., 2024. "Valorization of fish processing industry waste for biodiesel production: Opportunities, challenges, and technological perspectives," Renewable Energy, Elsevier, vol. 220(C).
- José María Encinar & Sergio Nogales & Juan Félix González, 2020. "The effect of BHA on oxidative stability of biodiesel from different sources," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1193-1201, December.
- Paparao, Jami & Soundarya, N. & Murugan, S., 2023. "Advancing green technology: Experimental study on low heat rejection engine utilizing bio-based antioxidant-doped biodiesel-diesel blends and oxy-hydrogen gas," Energy, Elsevier, vol. 283(C).
- Karishma, Shaik Mullan & Rajak, Upendra & Naik, B. Kiran & Dasore, Abhishek & Konijeti, Ramakrishna, 2022. "Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel," Energy, Elsevier, vol. 245(C).
- Magdalena Kapłan & Kamila Klimek & Grzegorz Maj & Dmytro Zhuravel & Andrii Bondar & Viktoriia Lemeshchenko-Lagoda & Boris Boltianskyi & Larysa Boltianska & Hanna Syrotyuk & Serhiy Syrotyuk & Ryszard K, 2022. "Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment," Energies, MDPI, vol. 15(9), pages 1-28, May.
- Wojciech Golimowski & Paweł Krzaczek & Damian Marcinkowski & Weronika Gracz & Grzegorz Wałowski, 2019. "Impact of Biogas and Waste Fats Methyl Esters on NO, NO 2 , CO, and PM Emission by Dual Fuel Diesel Engine," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
- Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
- Govindasamy, Mohan & Ramalingam, Senthil & Dhairiyasamy, Ratchagaraja & Rajendran, Silambarasan, 2022. "Investigation on thermal and storage stability of the Calophyllum inophyllum ester with natural leaf extract as antioxidant additive," Energy, Elsevier, vol. 253(C).
- Serqueira, Dalyelli S. & Pereira, Jian F.S. & Squissato, André L. & Rodrigues, Mônica A. & Lima, Renata C. & Faria, Anízio M. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2021. "Oxidative stability and corrosivity of biodiesel produced from residual cooking oil exposed to copper and carbon steel under simulated storage conditions: Dual effect of antioxidants," Renewable Energy, Elsevier, vol. 164(C), pages 1485-1495.
- Sandouqa, Arwa & Al-Hamamre, Zayed, 2021. "Economical evaluation of jojoba cultivation for biodiesel production in Jordan," Renewable Energy, Elsevier, vol. 177(C), pages 1116-1132.
- Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
- Atelge, M.R., 2022. "Production of biodiesel and hydrogen by using a double-function heterogeneous catalyst derived from spent coffee grounds and its thermodynamic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1-15.
- Sergio Nogales-Delgado & Nuria Sánchez & José María Encinar, 2020. "Valorization of Cynara Cardunculus L. Oil as the Basis of a Biorefinery for Biodiesel and Biolubricant Production," Energies, MDPI, vol. 13(19), pages 1-19, September.
- Hwai Chyuan Ong & M. Mofijur & A.S. Silitonga & D. Gumilang & Fitranto Kusumo & T.M.I. Mahlia, 2020. "Physicochemical Properties of Biodiesel Synthesised from Grape Seed, Philippine Tung, Kesambi, and Palm Oils," Energies, MDPI, vol. 13(6), pages 1-14, March.
- Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
More about this item
Keywords
Antioxidant; Oxidative stability; Rancimat; DSC; Platymiscium floribundum;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:767-774. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.