IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v143y2021ics1364032121001945.html
   My bibliography  Save this article

Peer-to-peer energy trading in a microgrid leveraged by smart contracts

Author

Listed:
  • Vieira, Guilherme
  • Zhang, Jie

Abstract

The current electricity networks were not initially designed for the high integration of variable generation technologies. They suffer significant losses due to the combustion of fossil fuels, the long-distance transmission, and distribution of the power to the network. Recently, prosumers, both consumers and producers, emerge with the increasing affordability to invest in domestic solar systems. Prosumers may trade within their communities to better manage their demand and supply as well as providing social and economic benefits. In this paper, we explore the use of Blockchain technologies and auction mechanisms to facilitate autonomous peer-to-peer energy trading within microgrids. We design two frameworks that utilize the smart contract functionality in Ethereum and employ the continuous double auction and uniform-price double-sided auction mechanisms, respectively. We validate our design by conducting A/B tests to compare the performance of different frameworks on a real-world dataset. The key characteristics of the two frameworks and several cost analyses are presented for comparison. Our results demonstrate that a P2P trading platform that integrates the blockchain technologies and agent-based systems is promising to complement the current centralized energy grid. We also identify a number of limitations, alternative solutions, and directions for future work.

Suggested Citation

  • Vieira, Guilherme & Zhang, Jie, 2021. "Peer-to-peer energy trading in a microgrid leveraged by smart contracts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121001945
    DOI: 10.1016/j.rser.2021.110900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121001945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gjerstad, Steven & Dickhaut, John, 1998. "Price Formation in Double Auctions," Games and Economic Behavior, Elsevier, vol. 22(1), pages 1-29, January.
    2. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    3. Mariam, Lubna & Basu, Malabika & Conlon, Michael F., 2016. "Microgrid: Architecture, policy and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 477-489.
    4. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umar, Abdullah & Kumar, Deepak & Ghose, Tirthadip, 2022. "Blockchain-based decentralized energy intra-trading with battery storage flexibility in a community microgrid system," Applied Energy, Elsevier, vol. 322(C).
    2. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    3. Wu, Ying & Wu, Yanpeng & Cimen, Halil & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading," Applied Energy, Elsevier, vol. 314(C).
    4. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints," Applied Energy, Elsevier, vol. 317(C).
    5. Liu, Wei & Chau, K.T. & Tian, Xiaoyang & Wang, Hui & Hua, Zhichao, 2023. "Smart wireless power transfer — opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    6. Zeng, Yu & Wei, Xuan & Yao, Yuan & Xu, Yinliang & Sun, Hongbin & Kin Victor Chan, Wai & Feng, Wei, 2023. "Determining the pricing and deployment strategy for virtual power plants of peer-to-peer prosumers: A game-theoretic approach," Applied Energy, Elsevier, vol. 345(C).
    7. Yu, Vincent F. & Le, Thi Huynh Anh & Gupta, Jatinder N.D., 2022. "Sustainable microgrid design with multiple demand areas and peer-to-peer energy trading involving seasonal factors and uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Andrzej Jezierski & Cezary Mańkowski & Rafał Śpiewak, 2021. "Energy Savings Analysis in Logistics of a Wind Farm Repowering Process: A Case Study," Energies, MDPI, vol. 14(17), pages 1-23, September.
    9. Sarah O’Connell & Marcus Martin Keane, 2021. "Development of a Framework for Activation of Aggregator Led Flexibility," Energies, MDPI, vol. 14(16), pages 1-15, August.
    10. Minuto, Francesco Demetrio & Lanzini, Andrea, 2022. "Energy-sharing mechanisms for energy community members under different asset ownership schemes and user demand profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Zhang, Bidan & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Jiang, Lin & Yan, Ke, 2022. "A novel adaptive penalty mechanism for Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 327(C).
    12. Hahnel, Ulf J.J. & Fell, Michael J., 2022. "Pricing decisions in peer-to-peer and prosumer-centred electricity markets: Experimental analysis in Germany and the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2023. "Blockchain technology for distributed generation: A review of current development, challenges and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    14. Manuel Casquiço & Bruno Mataloto & Joao C. Ferreira & Vitor Monteiro & Joao L. Afonso & Jose A. Afonso, 2021. "Blockchain and Internet of Things for Electrical Energy Decentralization: A Review and System Architecture," Energies, MDPI, vol. 14(23), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhenpeng & Ma, Tao, 2020. "Peer-to-peer electricity trading in grid-connected residential communities with household distributed photovoltaic," Applied Energy, Elsevier, vol. 278(C).
    2. Corgnet, Brice & DeSantis, Mark & Porter, David, 2020. "The distribution of information and the price efficiency of markets," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    3. X. Fernández, Bernardo & Fernández Q, Vladimir & Aldazosa, E. René, 2018. "Una subasta doble de divisas para la determinación del tipo de cambio en Bolivia," Revista Latinoamericana de Desarrollo Economico, Carrera de Economía de la Universidad Católica Boliviana (UCB) "San Pablo", issue 29, pages 152-189, May.
    4. Svitlana Vyetrenko & David Byrd & Nick Petosa & Mahmoud Mahfouz & Danial Dervovic & Manuela Veloso & Tucker Hybinette Balch, 2019. "Get Real: Realism Metrics for Robust Limit Order Book Market Simulations," Papers 1912.04941, arXiv.org.
    5. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    6. Itzhak Rasooly, 2022. "Competitive equilibrium and the double auction," Economics Series Working Papers 974, University of Oxford, Department of Economics.
    7. Xintong Wang & Christopher Hoang & Yevgeniy Vorobeychik & Michael P. Wellman, 2021. "Spoofing the Limit Order Book: A Strategic Agent-Based Analysis," Games, MDPI, vol. 12(2), pages 1-43, May.
    8. Athreya, Kartik B., 2014. "Big Ideas in Macroeconomics: A Nontechnical View," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262019736, December.
    9. Sabiou M. Inoua & Vernon L. Smith, 2022. "Perishable goods versus re-tradable assets: A theoretical reappraisal of a fundamental dichotomy," Chapters, in: Sascha Füllbrunn & Ernan Haruvy (ed.), Handbook of Experimental Finance, chapter 15, pages 162-171, Edward Elgar Publishing.
    10. Tai, Chung-Ching & Chen, Shu-Heng & Yang, Lee-Xieng, 2018. "Cognitive ability and earnings performance: Evidence from double auction market experiments," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 409-440.
    11. Aaron Wray & Matthew Meades & Dave Cliff, 2020. "Automated Creation of a High-Performing Algorithmic Trader via Deep Learning on Level-2 Limit Order Book Data," Papers 2012.00821, arXiv.org.
    12. Jakob Grazzini, 2013. "Information dissemination in an experimentally based agent-based stock market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 179-209, April.
    13. Gjerstad, Steven & Dickhaut, John, 1998. "Price Formation in Double Auctions," Games and Economic Behavior, Elsevier, vol. 22(1), pages 1-29, January.
    14. Jason Shachat & Zhenxuan Zhang, 2017. "The Hayek Hypothesis and Long‐run Competitive Equilibrium: An Experimental Investigation," Economic Journal, Royal Economic Society, vol. 127(599), pages 199-228, February.
    15. Steven Gjerstad, 2003. "The Strategic Impact of Pace in Double Auction Bargaining," Microeconomics 0304001, University Library of Munich, Germany.
    16. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    17. Brewer, Paul & Ratan, Anmol, 2019. "Profitability, efficiency, and inequality in double auction markets with snipers," Journal of Economic Behavior & Organization, Elsevier, vol. 164(C), pages 486-499.
    18. Großer, Jens & Reuben, Ernesto, 2013. "Redistribution and market efficiency: An experimental study," Journal of Public Economics, Elsevier, vol. 101(C), pages 39-52.
    19. Cason, Timothy N. & Friedman, Daniel, 1996. "Price formation in double auction markets," Journal of Economic Dynamics and Control, Elsevier, vol. 20(8), pages 1307-1337, August.
    20. Marta Posada & Adolfo López-Paredes, 2007. "How to Choose the Bidding Strategy in Continuous Double Auctions: Imitation Versus Take-The-Best Heuristics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(1), pages 1-6.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121001945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.