IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp154-162.html
   My bibliography  Save this article

Salinity gradient energy potential at the hyper saline Urmia Lake – ZarrinehRud River system in Iran

Author

Listed:
  • Emdadi, Arash
  • Gikas, Petros
  • Farazaki, Maria
  • Emami, Yunus

Abstract

Salinity gradient has globally high potential for electric energy production, especially where low salinity rivers discharge into hyper-saline lakes. Lake Urmia is world's second hyper-saline lake, with a number of low salinity rivers discharging into the lake, the most significant of which is ZarrinehRud River. Based on thermodynamic calculations and on field data, the theoretical potential of energy production at the above system has been calculated between 400 and 1000 MW, while the technical potential is expected between 40 and 50% of that.

Suggested Citation

  • Emdadi, Arash & Gikas, Petros & Farazaki, Maria & Emami, Yunus, 2016. "Salinity gradient energy potential at the hyper saline Urmia Lake – ZarrinehRud River system in Iran," Renewable Energy, Elsevier, vol. 86(C), pages 154-162.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:154-162
    DOI: 10.1016/j.renene.2015.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wick, Gerald L., 1978. "Power from salinity gradients," Energy, Elsevier, vol. 3(1), pages 95-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viet-Ha Nhu & Ayub Mohammadi & Himan Shahabi & Ataollah Shirzadi & Nadhir Al-Ansari & Baharin Bin Ahmad & Wei Chen & Masood Khodadadi & Mehdi Ahmadi & Khabat Khosravi & Abolfazl Jaafari & Hoang Nguyen, 2020. "Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM + Images," IJERPH, MDPI, vol. 17(12), pages 1-18, June.
    2. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    3. Essalhi, Mohamed & Halil Avci, Ahmet & Lipnizki, Frank & Tavajohi, Naser, 2023. "The potential of salinity gradient energy based on natural and anthropogenic resources in Sweden," Renewable Energy, Elsevier, vol. 215(C).
    4. Etzaguery Marin-Coria & Rodolfo Silva & Cecilia Enriquez & M. Luisa Martínez & Edgar Mendoza, 2021. "Environmental Assessment of the Impacts and Benefits of a Salinity Gradient Energy Pilot Plant," Energies, MDPI, vol. 14(11), pages 1-24, June.
    5. Avci, Ahmet H. & Tufa, Ramato A. & Fontananova, Enrica & Di Profio, Gianluca & Curcio, Efrem, 2018. "Reverse Electrodialysis for energy production from natural river water and seawater," Energy, Elsevier, vol. 165(PA), pages 512-521.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Avci, Ahmet H. & Tufa, Ramato A. & Fontananova, Enrica & Di Profio, Gianluca & Curcio, Efrem, 2018. "Reverse Electrodialysis for energy production from natural river water and seawater," Energy, Elsevier, vol. 165(PA), pages 512-521.
    3. Miller, S.L. & Svrcek, M.N. & Teh, K.-Y. & Edwards, C.F., 2011. "Requirements for designing chemical engines with reversible reactions," Energy, Elsevier, vol. 36(1), pages 99-110.
    4. Giacalone, F. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G. & Cipollina, A., 2019. "Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment," Energy, Elsevier, vol. 181(C), pages 532-547.
    5. Kjersti Wergeland Krakhella & Robert Bock & Odne Stokke Burheim & Frode Seland & Kristian Etienne Einarsrud, 2019. "Heat to H 2 : Using Waste Heat for Hydrogen Production through Reverse Electrodialysis," Energies, MDPI, vol. 12(18), pages 1-25, September.
    6. Daniilidis, Alexandros & Vermaas, David A. & Herber, Rien & Nijmeijer, Kitty, 2014. "Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis," Renewable Energy, Elsevier, vol. 64(C), pages 123-131.
    7. Helfer, Fernanda & Lemckert, Charles, 2015. "The power of salinity gradients: An Australian example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1-16.
    8. Ciofalo, Michele & La Cerva, Mariagiorgia & Di Liberto, Massimiliano & Gurreri, Luigi & Cipollina, Andrea & Micale, Giorgio, 2019. "Optimization of net power density in Reverse Electrodialysis," Energy, Elsevier, vol. 181(C), pages 576-588.
    9. Wang, Y. & Wang, H. & Wan, C.Q., 2018. "The effect of colloids on nanofluidic power generation," Energy, Elsevier, vol. 160(C), pages 863-867.
    10. Chin, Hon Huin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2023. "Novel circularity and sustainability assessment of symbiosis networks through the Energy Quality Pinch concept," Energy, Elsevier, vol. 266(C).
    11. Kang, Byeong Dong & Kim, Hyun Jung & Lee, Moon Gu & Kim, Dong-Kwon, 2015. "Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores," Energy, Elsevier, vol. 86(C), pages 525-538.
    12. Kim, Juwan & Kim, Sung Jin & Kim, Dong-Kwon, 2013. "Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores," Energy, Elsevier, vol. 51(C), pages 413-421.
    13. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    14. Essalhi, Mohamed & Halil Avci, Ahmet & Lipnizki, Frank & Tavajohi, Naser, 2023. "The potential of salinity gradient energy based on natural and anthropogenic resources in Sweden," Renewable Energy, Elsevier, vol. 215(C).
    15. Jeong, Hoe-In & Kim, Hyun Jung & Kim, Dong-Kwon, 2014. "Numerical analysis of transport phenomena in reverse electrodialysis for system design and optimization," Energy, Elsevier, vol. 68(C), pages 229-237.
    16. Olkis, C. & Santori, G. & Brandani, S., 2018. "An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat," Applied Energy, Elsevier, vol. 231(C), pages 222-234.
    17. Tian, Hailong & Wang, Ying & Pei, Yuansheng & Crittenden, John C., 2020. "Unique applications and improvements of reverse electrodialysis: A review and outlook," Applied Energy, Elsevier, vol. 262(C).
    18. Hailong Gao & Zhiyong Xiao & Jie Zhang & Xiaohan Zhang & Xiangdong Liu & Xinying Liu & Jin Cui & Jianbo Li, 2023. "Optimization Study on Salinity Gradient Energy Capture from Brine and Dilute Brine," Energies, MDPI, vol. 16(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:154-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.